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Abstract: In some applications, for instance finance, biomechanics, turbulence or internet traf-
fic, it is relevant to model data with a generalization of a fractional Brownian motion for which the
Hurst parameter H is depending on the frequency. In this contribution, we describe the multiscale
fractional Brownian motions which present a parameter H as a piecewise constant function of the
frequency. We provide the main properties of these processes: long-memory and smoothness of the
paths. Then we propose a statistical method based on wavelet analysis to estimate the different
parameters and prove a functional Central Limit Theorem satisfied by the empirical variance of the

wavelet coefficients.

Keywords: Fractional Brownian motion; Long-range dependence; Path regularity; Self-similarity;

Wavelet analysis; functional Central Limit Theorem.

1 Introduction

Fractional Brownian Motion (F.B.M.) was introduced in 1940 by Kolmogorov as a way to generate
Gaussian "spirals" in a Hilbert space. But the seminal paper of Mandelbrot and Van Ness (1968)
emphasizes the relevance of F.B.M. to the modelling of natural phenomena: hydrology, finance,...
Various properties of F.B.M. such as self-similarity and smoothness of the sample paths, long range
dependence of its increments, are related to the Hurst parameter H. During the decades 1970’s and

1980’s, the statistical study of F.B.M. has been developed, see for instance the historical notes in
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Samorodnitsky & Taqqu (1994), [29, chap.14] and the references therein. F.B.M. has been more and
more used in several areas during the last decade (internet traffic, turbulence, image processing...).
Anyway, in many applications the real data do not fit exactly F.B.M. which appears as an ideal
mathematical model. Therefore different generalizations of F.B.M. have been proposed these last
years to fill the gap between the mathematical modelling and real data.

One example is the family of model derived from the Multifractional Brownian Motion (M.B.M.)
introduced independently in Peltier and Lévy Vehel (1996) and Benassi, Jaffard and Roux (1997).
For the M.B.M. the Hurst parameter H is replaced by a function depending continuously on the
time ¢ — H(t). Afterwards, the Generalized Multifractional Brownian Motion (G.M.B.M.) has
been introduced by Ayache and Lévy Vehel (2000) for modelling the situations where the Hurst
parameter H should be replaced by an irregular function of time. Nevertheless, in some fields
(image analysis or control of internet traffic) the interesting information is the location of changes
point of the function ¢ — H(t) and, in these cases, H(.) appears as a piecewise constant function
of time. Benassi et al. (2000) proposed the Step Fractional Brownian Motion (S.F.B.M.) as a
good model in this circumstance. The detection of changes times of the function ¢ — H(¢) for
the S.F.B.M. has been investigated in Benassi et al. (2000) and Ayache, Bertrand and Lévy Vehel
(2006).

So finding a good generalization of the F.B.M. enhancing the goodness of fit to the different
applications has became an active field of research. A first stream which has been described above,
is concerned with Gaussian processes where the Hurst parameter H has been replaced by a function
depending on the time. This dependency of time induces the loss of the stationarity of the incre-
ments. A second stream is concerned with non Gaussian processes, mainly « stable (0 < a < 2)
infinite variance processes, see for example the study of telecom processes in Pipiras and Taqqu
(2002).

In this work, we are concerned with Gaussian processes with stationary increments where the
Hurst parameter H is replaced by a piecewise constant function of the frequency £ — H(¢). Before
going further, we recall a precise definition of the F.B.M. and some of its properties.

Formally, a fractional Brownian motion By = (Bg(t), t € IRy) could be defined as a real cen-
tered Gaussian process with stationary increments such that B (0) = 0 and IE |By(s) — Bu(t)]* =
o2 |t —s|?H | for all pair (s,t) € IR, x IR, where H €]0,1] and o > 0. This process is characterized
by two parameters: the Hurst index H and the scale parameter . We lay the emphasis on the fact

the same parameter H is linked to three different properties of the F.B.M.:

1. The self-similarity of the process, i.e. for all A\ € IRT,

(BHO‘t))teIRJr @ ()‘H BH(t))teR+ '

2. The regularity of the sample paths: with probability one, the map t — Bpg(t) is Holder

continuous of order «, for all positive real number a < H;

3. The long memory (or short memory) property of the increments. Let Y (¢) = By (t+ 1) — Bu(t),

fort € IR+, Y is a centered stationary Gaussian process corresponding to the increment of the
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process By. A stationary IL?-process Y = (Y (t),t € IN) is said to be a long-range dependent

process (or long-memory process) when

o0

> Ir(k)] = oo,
k=—00
where r(k) = cov (Y (k),Y (0)) is the covariogram of Y. For the F.B.M. we have |r(k)| ~
02 H(2H —1) k*#=2 when |k| — +oo (and H # 1/2, the case of H = 1/2 corresponding to the
well-known case of Brownian motion with independent increments). Thus, when H > 1/2
the increments of a F.B.M. are long-memory process and when H < 1/2, a short-memory

process.

From one hand, the regularity of the sample paths could be interpreted as a high frequency behavior,
from the other hand the long memory of the increments correspond to a low frequency behavior.
Yet, as mentioned by Mandelbrot and Van Ness (1968) [24], " the concept of self-similarity is a
form of invariance with respect to changes of time scale ". For this reason, the high frequency
behavior and the low frequency behavior are linked and driven by the same parameter H. However,
in some applications, this link can appear as artificial. We indicate below three examples in finance,

turbulence and biomechanics

e On the one hand, statistical studies on financial data show the long memory property of the
price process, see for e.g. Willinger et al. [30]. On the other hand, financial theory says it
should not be possible to make profit without any risk. This implies that the price process
should be a semi-martingale, therefore its Hurst index should be H = 1/2 at high frequencies.
In this case the contradiction between the empirical evidence and the theoretical reasoning
follows from the invariance with respect to changes of time scale. This contradiction would

disappear if one put an end to this scale-invariance assumption.

e In turbulence phenomena, the assumption of scale-invariance is assumed within the inertial
range (see Frisch [22, p.104]| or Papanicolaou and Sglna (2002) [25]). Fundamental and ex-
perimental physics show that the scale invariance is valid for a large but finite range of scales

excluding both the microscopically and the astronomically ones.

e In biomechanics, Collins and de Luca (1993) introduced a fractional process with two different
Hurst indexes at low and high frequencies, for modelling the trajectories of the center of
pressure of human been in upright position. Moreover, in this case the relevant information

is the value of the change frequency.

The previous examples exhibit the advantage to model real data by Gaussian processes having
stationary increments with a Hurst index varying as a piecewise function of the frequencies. To
our knowledge, these kinds of processes have been introduced implicitly in biomechanics by Collins
and de Luca (1993), in finance by Rogers (1997) and Cheridito (2003) and explicitly by Benassi
and Deguy (1999) for image analysis and image synthesis. Anyway, the probabilistic properties

of these processes have never been precisely established and no rigorous statistical study has been
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made. Both Collins and de Luca (1993) and Benassi and Deguy (1999) propose a model with two
different Hurst indices corresponding respectively to the high and the low frequencies separated by
one change point at the frequency w.. They use the log-variogram to estimate these two Hurst
indices. Indeed, in this case, the log-variogram considered as a function of the logarithm of the
scale presents two asymptotic direction with slopes being twice the Hurst index at low (respectively
high) frequencies. The change point w, is then estimated as the X-coordinate of the intersection of
these two straight lines. Numerically, this method is not robust. Moreover it could not be adapted
in the case of more than one change point. Let us stress this is not a theoretical refinement, but
corresponds precisely to the real situations. Indeed, in applications, we only consider finite bands of
frequencies, therefore we should use statistical method based on the information included in finite
bands of frequencies. Wavelet analysis appears as the had hoc tool, when the Fourier transform of

the associated wavelet is compactly supported.

For these reasons, we propose a model including the cases with more than one frequency change
point and investigate the estimation of the Hurst function £ — H () inside finite bands of frequencies
by the mean of wavelet analysis. The remainder of the paper is organized as follows: in section
2, we define the multiscale fractional Brownian motion and establish its main properties: the long
memory one and the smoothness of sample paths. In section 3, we derive a statistical study based
on its wavelet analysis. More precisely, the empirical variance of wavelet coefficients provides a
semi-parametric method for estimating the different parameters of the process. For this purpose,
we prove a functional Central Limit Theorem satisfied by the empirical variance of the wavelet
coefficient considered as a function of the scale. In the appendices Al and A2, we develop two
examples of applications in finance and biomechanics. The proofs of section 2 and 3 are respectively

given in the appendices B1 and B2.

2 Description of the Model and its Probabilistic Properties

In this section, the multiscale fractional Brownian motion is defined and its probabilistic properties,

mainly the smoothness of the paths and the long-memory property, are studied.

2.1 Definition of the Multiscale Fractional Brownian Motion

Fractional Brownian motions (F.B.M.) were popularized by Mandelbrot and Van Ness (1968) who
suggest the study of their properties as a typical example of non-Markovian process. F.B.M. are
Gaussian processes with stationary increments with a given covariance structure. The F.B.M.
has different representations which could alternately be used as definition: the moving average
representation, the harmonizable representation. We propose Samorodnitsky and Taqqu (1994),
[29, chap. 7] as a reference book on the matter. The harmonizable representation of the F.B.M.

([29, , p. 328] is well adapted to our problem and is defined by

ets — 1)
Bu(t) = [ (IEIT/) W () )
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where W(dz) is a Brownian measure and W(df) its Fourier transform, namely for any function
[ € L?(IR) one has almost surely, [ f(z)W(dz) = [g F(€) W (d€), with the convention that
F(&) = [pe ™ f(x) da when f € L'(IR) N L*(IR).

A natural generalization consists in replacing the Hurst index H in formula (1) by a piecewise
function depending on frequencies, i.e. & — H({). We call it the multiscale fractional Brownian

motion and we define it as follows,

Definition 2.1 For K € IN, a (Mg )-multiscale fractional Brownian motion (simplify by (Mk)-
F.B.M.) X = (X(t),t € Ry) is a process such that

) o
X(t) = /]Rp(g) W(de) forte Ry 2)

with

o W(d€) is a standard Brownian measure and W (d€) its Fourier transform in the distribution

meaning.

o fori=0,...,K, there exist (w;,0;, H;) € (IRy,IRy,)0,1[) such that p(€) = o; *|E|TiT/2 for

€] € [wi,wig1] withwy =0 <wy < ...<wg <wg41 = +0o0 by convention.

The (Mg )-F.B.M. was first introduced in Benassi and Deguy (1999) in the case of only one change.
A particular case of such a process can also be found in Ayache and Lévy-Vehel (2004). Until the
end of this article, we restrict ourselves to one dimensional processes depending on a parameter

t € IR, , but a generalization to random fields could also be studied.

Remark 2.1 Formula (2) defined a zero-mean Gaussian process as soon as

-,

1
[1 — cos(t)] x €~ CHAY ge therefore the conditions Hi > 0 and Hy < 1 insure

eltt — 1‘2 p2(&) d¢ < 0.

Wi+

K
ButJ =2 /
i=0 YW
respectively the convergence at point oo and at point 0 and after imply J < oo. To sum up, for all

(Ho,...,Hg) € REH with Hg > 0 and Hy < 1, formula (2) defined a zero-mean Gaussian
process. Moreover, when Hy < 1 Property 2.1, item 2 and item 3, i.e. formulae (3) and (4) below,
remain in force. For this new generalization, the difference concerns the long-memory property of
the increments. Indeed, the properties (5) and (6) below are also satisfied but the proof has to be
changed when Hy < 0 (it is straightforward...).

2.2 Some Probabilistic Properties of the Multiscale Fractional Brownian Mo-
tion

The proof of the existence of a continuous version of a (Mg)-F.B.M. can be found in Cramér
and Leadbetter (1967). A (Mkg)-F.B.M. presents K spectral change points. A (Mp)-F.B.M. is a
fractional Brownian motion with a Hurst parameter Hy. A (M )-F.B.M. has the same expression

than a fractional Brownian motion with a Hurst parameter H; for frequencies [{| € [wi,wit1].
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Therefore we could expect that a (M )-F.B.M. path would have the regularity driven by Hx (at high
frequencies) and a long term dependence of its increments driven by Hy (at low frequencies). The

first point is satisfied, but Property 2.2 shows that the second one is a little bit more complicated.
Property 2.1 Let X be a (Mg)-F.B.M.
1. X s a Gaussian centered process with stationary increments.

2. For a time step § > 0, let the variogram of X be V(8) := IE (X (t + 6) — X (t)). Then we have

K dwit1 (1 —
V() = 4252Hia§/ : %dv. (3)
i=0 dwi '
3. We have the decomposition
X(t) = Brg(t)+ R(1), (4)

where By, is a F.B.M. with Hurst index Hy and R a continuous process with finite variation.
Thus X has the same reqularity than the F.B.M. By, . Particularly, the trajectories of X are
a.s. of Holder regqularity «, for every o € [0, Hg[.

Therefore a (Mg )-F.B.M. shares two properties with a F.B.M. of parameter Hg: they are contin-
uous Gaussian centered processes with stationary increments and a-Hélderian regularity for every
a € [0, Hi[. However, Formula (3) shows a substantial difference between both the processes: for
all 6 € IRy, the variance of a (Mg )-F.B.M. in § is a function depending on ¢ and all the parameters
(Hj,wi,0i)o<i<k- Thus, the variance of a (M )-F.B.M. is not a self-similar function and the famous

log-variogram method is not relevant for the estimation of the different parameters.

Now, in view of the study of the low frequency behavior, we consider process of the increments
of X, Y =(Y(t),t € Ry), with

Y(t) = X(t+1)— X(t), forte R,.

Remark 2.2 It is obvious that for all 6 > 0, the process Y5 such that Y5 = (Ys(t),t € Ry) =
(X(t+0)— X(t),t € Ry) is also a stationary Gaussian process. The following property 2.2 can
also be established for (Ys(t)): instead of (Y (t));. The only difference is that each o? has to be
multiplied by a factor 6" in the right term of formula (5) below and also the different terms of the
following polynomial P(n) in formula (7).

Y is a centered stationary Gaussian process. Moreover, we have the following property:

Property 2.2 Let X be a (Mg)-F.B.M. with K > 1 and Y its increments defined as previously.
Define r(n) = cov (Y (n),Y(0)), the correlogram of the increments of X. Then

. 1 B mog(2Ho — 1) 1 1

ifHo>35, r(n)= (r(2£10)sif1(7rﬂo)> o O (ﬁ) ’ )
_ 1 P(n 1

i Ho <5, r(n) = 7(2 ) o <n2_2H0> : (6)
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with P(n) a trigonometric polynomial depending only on (H;,w;, 0;)o<i<k such that

K A 2 2
P(n) = 8251112 (%) X ( (27;;1_1_1 — ?Hz> X sin(nw;). (7)
i=1 Wi—1 W
From this property we derive the asymptotic behavior of the dependence of the increments of X.
Then, the long-range property of the increments of the process Y depends on Hy, but not only on
this value. More precisely, if Hy > 1/2, the long-range (or low frequencies) behavior of Y is the
same that the behavior of a fractional Gaussian noise with parameter Hy. Thus, Y is a long-range
dependent process. If Hy < 1/2, the process Y is a long-range dependent process except when

(Hj,wi, 0i)o<i<k satisfies a relation such that the trigonometric polynomial P(n) of (7) is vanished.

Remark 2.3 If we consider the spectral density function of the stationary process Y in the meaning
o

of Cramér and Leadbetter (1967, p. 136), i.e. the function f such that r(t) :/ cos(At) f(t)dt,
0

sin?(t/2)
we have f(t) = W Therefore, f is not a continuous function except if for all i =1,--- K,
p
flw;) = lim f(t), i.e. the same condition that P(n) =0 for alln € IN. Since f is not a continuous
t—w.

i

function then Z |r(k)| = oo and thus Y is a long-range dependent process. For instance, if K =1

keIN
i ot
and LS % A f is discontinuous in w1 and Y 1is a long-range dependent process even if
1 1

Hy < 1/2 and Hy < 1/2.

3 A statistical study based on wavelet analysis

In this section, we propose a statistical study based on wavelet analysis. After having explained the
reason of this choice, we describe the definition of the wavelet coefficients and their basic properties.
Then we state the main result of this section, that is a functional central limit theorem satisfied
by the empirical variance of wavelet coefficients. At the end of this section, we give a numerical
example which illustrate the Central Limit Theorem.

To begin with, we specify the statistical framework. Let X be a (Mg )-F.B.M. defined by (2).
We observe one path of the process X on the interval [0,Ty] at the discrete times ¢; = i x Ay
fori =1,...,N and Ty = N x Ay. We want to estimate the parameters of the (My)-F.B.M.
that is (Ho, H1,...,Hk), (00,01,...,0K) and (wi,...,wk). We consider the asymptotic N — o0,
Ay — 0and Ty — +oo.

Even if the model is defined here as a parametric one, we prefer to use a semi-parametric statistics
for different reasons. First, the covariance of the increments has the asymptotic behavior described
in Property 2.2 and if Hy < 1/2, this behavior cannot be written as r(n) = L(n)n~% with L a slow
varying function. Then, the classical results (see Fox and Taqqu, 1986, Dahlhaus, 1989 or Giraitis
and Surgailis, 1990) on the asymptotic behaviors of parametric (maximum likelihood estimator and
Whittle maximum likelihood) estimators cannot be used. As a consequence, a new and difficult

study of the convergence rate of such estimators should be done, without any guarantee to obtain



8 The multi-scale fractional Brownian motion

good properties (another difficulty is implied by the discontinuity of the spectral density function
as seen in Remark 2.3).

Afterwards, the following semi-parametric statistics is more robust than a parametric one if the
model is misspecified. Consider the example where the function H () is a not exactly a piecewise
constant function, but instead a constant function on several intervals (in other intervals, H(§) is
some unknown function). In this case, a parametric estimator could not work while the following
semi-parametric method will remain relevant.

Eventually, we prefer to use a method based on a wavelet analysis. This method has been
introduced by Flandrin (1992) and was developed by Abry et al. (2001) and Bardet et al. (2000).

Let ¢ be a “mother” wavelet satisfying the following assumption:

Assumption (Al): ¢ : R+ IR is a C* function satisfying:
o forallm € Z, / ™4 (8)] dt < o0,
R
e its Fourier transform 1}(5) is an even function compactly supported on [—f,—a] U [a, §] with
O0<a<p.

We stress these conditions are sufficiently mild and are satisfied in particular by Lemarié-Meyer
wavelet. The admissibility property, i.e. / Y (t)dt = 0 is a consequence of the second one and more
R

generally, for all m € IV,

/ o (t)dt = 0. (8)
R

Remark that it is not necessary to choose 1 being a “mother” wavelet associated to a multiresolution
analysis of IL?(IR). The whole theory can be developed without resorting to this assumption: the
choice of v is then very large.

Let (a,b) € IR} x IR, we denote A = (a,b). Then we define the family of functions v by

1
YA(t) = —=1 (t - b). Parameters a and b are so-called the scale and the shift of the wavelet
a

Ja

transform (here we consider a continue wavelet transform). Let dx(a,b) be the wavelet coefficient
of the process X for the scale a and the shift b, with

1 t
dx(a,b) = Va /Riﬁ(; —b)X()dt =< x, X >12(R) -
This family of wavelet coefficients satisfies the following properties:

Property 3.1 Let ¢ satisfy Assumption (A1) and X be a (Mg)-F.B.M. Denote

Ti(a)=a /R (D (aw)|? p2(u) du. (9)
Then:

1. for a >0, (dx(a,b))scr is a stationary centered Gaussian process such that:

= %@)W(d@ and IE (dgf(a, )) =Ti(a). (10)

dx(a,b) r p(§)
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2. foralli=0,1,---, K, if the scale a is such that [g, ﬁ] C [wi,wit1], then
a’ a

~ 2
P(u)
E (d_%((a, )) = a* 0P Ky, (), with Kp () = = L‘QTLCZU' (11)

Remark 3.1 Another possible interpretation of this property is the following: the process (dx (t,0))ier,

oo,
—|, 1.€. dX t,0 L <t< )
. o u.Ji+1u Wi.]’ ( ( ) ))ﬂ/wl+1_t_a/wz
is a H;-self-similar process. However, such a process has no stationary increments.

is a continuous centered Gaussian process H;-self-similar fort € |

The property (11) is useful for the estimation of the parameters of X. Indeed, we deduce that if

a
, —], then
Wil Wi

log (E (d?x(a, ))) = (2H; + 1) loga + log o? + log K, (1)). (12)

Thus, if we consider a convergent estimator of log (IE (d%(a,.))), it provides a linear model in log a

the scale a € |

and log o7. This natural estimator is log Iy (a) with

1 [N/a]—1 )
IN(G)ZW kz::l dx (a, kAN). (13)

This choice is motivated by two arguments. First, we only observe the values X (0), X (An),---, X(NApy),
then the function 1) is essentially supported around 0. The stationarity of d% (a,.) implies that for
all a > 0,

B (In(a)) = I (dk(a,.)).
With these notations, the main result of this paper, that is the following functional central limit

theorem satisfied by (log In(@))a,nin<a<amas» can be established:

Amin

Theorem 3.1 Let X be a (Mg)-F.B.M., 0 < amin < Gmaz and ¥ satisfy Assumption (A1). Then,

VNAy (log In(a) —1ogT1(a)),  cocar = (Z(a))apim<a<amas (14)

N—oo

with (Z(a)) a centered Gaussian process such that for (a1,a2) € [amin, Gmaz)?,

~ 2
con(Z(ar), Z(az)) = Il(jflz“j@ / ( / 1"‘“51@“29 ‘i“5d§> du. (15)

Then, if we specify the localization of scales, i.e. frequencies, we obtain the following consequence:

Corollary 3.1 Letie€ {0,1,---,K} and assume that s < it
(07 Wy

. Then,

. - 2_
VNAY (log In(1/ f)+(2Hi+1)log flogo? log Ky, ()
T (2 D)erfazs<i o (16)

with the centered Gaussian process (Z(.)) such that for (f1, f2) € [Wz wigl
a

2H 2
con(2(1/1). 201/ 1) = L2 [ ( “@Hﬁ/ﬁ") ‘iugdf) dw. ()

]27
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For Ay small enough, this result shows that every parameters H; and o? could be estimate by a
linear regression of log In(1/f;) onto log f;, when the frequencies w; are known. Moreover, this
central limit theorem shows that a graph of (log f, log In(1/f)) for f > 0 exhibits different areas
of asymptotic linearity when X is a (Mg )-F.B.M. This will be illustrated in the following example.

Example 3.1 (A numerical simulation) Let X be a (M;)-F.B.M., with 09 = 01 =5, Hy = 0.6,
Hy = 0.2 and w; = 0.5. A discretized trajectory (X(Apn), -+, X(N.Ay)) (where N = 3000 and
Apn = 0.05) is numerically obtained from property (3) and Cholesky method which provides L.U.
decomposition of the covariance matrix of (X(An),---, X(N.Ap)).

160
140 |
|

120 N

80 b

X(®)

60 b

20 1

1 1 1
500 1000 1500 2000 2500 3000

Figure 1: A discretized path (X (0.05), X(0.10),---, X (150)) of a (M;)-F.B.M., with 09 = 01 = 5,
Hy=0.6, H = 0.2 and w; = 0.5.

Now it is possible to compute (log In(f),log f) for numerous values of f. More precisely, we define
fi= fmqi/150 for ¢ = 0,1,---,150 such that ¢ = L;—M with f,, = 0.01 and fj; = 10. The chosen

m
mother wavelet is the Lemarié-Meyer wavelet with o = 27/3 and § = 87/3.



J.M. Bardet and P. Bertrand 11
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Logarithm of IN

I
I
[
I
I
log (w/B) !bg(B/a):Zbgz
[
[
I
i
\

-— | log (w/a)
or | N
G/ T
/
2 | | | | L4 | |
-6 -5 -4 -3 -2 -1 0 1 2

Logarithm of the chosen frequencies (Hz)

Figure 2: The double logarithm plotting of the variance of wavelet coefficients and its correspond-

ing regression lines for the previous path of a (M;)-F.B.M.

We observe both the different intervals of linearity and obtain the following estimations by lin-
ear regression: Hy ~ 0.16 and H; ~ 0.65 that are rather good estimations. This was done with the
knowledge of w;. In Bardet and Bertrand (2003), we develop a method for estimating (w;);, the
different parameters (H;); and (0?); and construct a goodness-of-fit test for a (M )-F.B.M.

A Two examples of applications

A.1 Finance

Numerous papers in financial economic exhibit the long-range dependence of the price of shares.
They are based on statistical studies of financial data, see for instance Willinger et al. (1999)
and the references therein. These studies have suggested the modelling of log-price process by a
fractional Brownian motion. But Rogers (1997) has shown that the F.B.M. is an absurd candidate
for the log-price of a share, say X, since modelling by F.B.M. (X = Bp) would induce the existence
of arbitrage opportunities. This mainly follows from the fact that a F.B.M. By is not a semi-
martingale except when H = 1/2. Anyway, the notions should be specify. To be exact, we say
that an arbitrage exists if there is some trading strategy whose gain process (Y;)o<i<1 satisfies a)
Yo=0<Y1,b)Y, > —1forall t € [0,1], and ¢) P (Y; >0) > 0. If the log-price process is
not a semi-martingale then there can be no equivalent probability (called risk neutral probability)

under which X becomes local martingale. The existence of (at least) one risk neutral probability
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is equivalent to the NFLVR condition (= No Free Lunch at Vanishing Risk), see Delbaen and
Schachermayer (1994). The existence of an arbitrage implies the existence of a FLVR, but the

converse is false, see counterexamples in Delbaen and Schachermayer (1994). Rogers (1997) shows
that when H # 1/2

1. the F.B.M. By is not a semi-martingale, then there exists no risk neutral probability,
2. there exists an arbitrage.

This study is based on the moving average representation

X0 =G5 [ lplt =)~ pl-s)] i, (19

with the kernel p(z) = |2z|#~1/2 1jo,400[(z). But Rogers (1997) remarked that the existence of
arbitrage is linked to the behaviour of the kernel at the vicinity of 0. He proposed to replace the
kernel by a regularized kernel (in the vicinity of 0), then the process X defined by (18) becomes
a semi-martingale and exhibit the same long-range dependence as the increments of the F.B.M.
Cheridito (2000) gives a class of regularized kernel for which the corresponding price process is
arbitrage-free and also equivalent to Brownian motion, therefore there exists a unique risk neutral
probability and he derives formulas for the price of European option.

The regularization of the kernel ¢ near 0 corresponds to a modification of the high frequencies
behaviour of the process. The case where X is a (Mg )-F.B.M. corresponds to another modification.
Formula (4) shows that a (Mg )-F.B.M. is a semi-martingale if and only if Hx = 1/2. Let us specify
the reasoning, X is a semi-martingale if and only if By, is a semi-martingale and the F.B.M. By,
is a semi-martingale if and only if Hx = 1/2, see Rogers (1997). In conclusion, the (Mg )-F.B.M.
with Hxg = 1/2 appears as a reasonable model for the log-price process, this is confirm by the
statistical study given in Bardet (2000). The pricing of European option with this model remains

open.

A.2 Biomechanical applications

In Biomechanic, one wishes to model the upright position of human being in quiet stance and un-
derstand the control system maintaining the upright posture. The position of the center of pressure
(C.0.P.) is measured on a force platform during one minute at 100 Hz, leading to set of 6000 data.
Collins and de Luca (1993) [16] introduced the use of F.B.M. for modelling these data. From the
application of the log-variogram method, Collins and de Luca interpret the obtained graph as cor-
responding to a F.B.M. with two regimes a short term with slope 2H; and a long term with slope
2H, separated by a critical time lag J. and these parameters are estimated graphically: one obtains
Hy > 0.5, H; < 0.5 and a critical time lag é. ~ 1 s. In fact, the first analysis would suggest the
modelling by a (M;)-F.B.M. This method has been used many times in biomechanics with different
experimental conditions (opened eyes versus closed eyes, different feet angles,...). But the automatic

determination of the critical time lag d. (corresponding to the frequency change wy) and of the two
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slopes 2Hy, 2H; is problematic with the statistic based on the variogram.

Here, we present the result of the wavelet analysis for a lateral path of the C.O.P. The chosen
mother wavelet is such that & = 5 and § = 10 and the frequency change is automatically de-
tected. We refer to Bardet and Bertrand (2003) for a complete study of biomechanical data and its

conclusions.

|
Z Y
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E ir | "'~._ B
£ | .
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- o} | a
|
| |
_1 - ‘ ‘ -
| |
-2r log(w/B) | ‘ 1
"og (B/a)=log 2
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-8r [ [ log (w/a) I
[ | /
_4 | | | 1 | ! | | |
-45 -4 -35 -3 -25 -2 -15 -1 -0.5

Logarithm of the chosen frequencies (Hz)

Figure 2: The double logarithm plotting of the variance of wavelet coefficients and its corresponding

regression lines for a lateral trajectory of the C.O.P.!

B Proofs

B.1 Proofs of section 2

Proof. |[Property 2.1| 1. See Cramér and Leadbetter (1967) for the proof of the stationarity of

the increments of X.

2. We easily obtain:

B ]ei‘sg — 1|2 B o0 (1 — cos(d€))
O = [ am € e
K Wi41 — )

'these experimental data were realized by A. Mouzat and are used in [13].
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that provides us (3) after the change of variable 6§ = v.

3. Formula (2) gives us
)
X(t) = /RWW(df)

eits _ . zté_
- /5 uW(df) S / (=) g W (de)

|[<wgk |€’HK+1/2 §=0 5 <[§l<wjt1 ‘§|H e[Ft12

it 1
The harmonizable representation (1) shows that / g W(d¢) is a F.B.M. with Hurst index
(€T

Hg, we call it By, this provides the decomposition (4) with

K-1

R(t) - ZHKwa(t) + Z (ZHj7Wj+1 (t) _ZHj70Jj <t>)
=0

where by definition

(-1)

Zyu(t) = /£< NEa W (d€).

When H €]0, 1] and w €]0, +o0[, the process Zp ,, has finite variation. Since R(¢) is a finite sum of
these processes, it is a process with finite variation. Therefore, the decomposition (4) induces that
the regularity of X is exactly the regularity of the F.B.M. with parameter By, . This finishes the
proof of Property 2.1. |

Proof. [Property 2.2| First, we have

r(n) = 8202 /“’iH cos(n&) sin? (£/2) . (19)

€2H;+1
Indeed, using (2) and the definition of r(n), we get:

r(n) =cov (Y(n),Y(0)) = cov[X(n+1)—X(n)),(X(1)—X(0))]

B (eif(n-i-l) _ eign) (e—ig _ 1)
S R

_ [ e sin? (€/2)
0

p?(€)

which induces (19) by definition of the (Mj)-F.B.M. Formulae (5) and (6) are asymptotic expan-

sion of r(n) following the powers of 1/n. After two integrations by parts, we have the following
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calculations: for every w > 0 and H €]0,1]

00 i 02 9
/w cos(nilzlill (&/ )d£ _
o ) 0o : H 102
[ e (- )
1 . . 2 2 1 . . 2 2
- Ta (sm(ntz)gril(w/ )> T2 cos(nw) (;;gijl —(2H + 1)_812251;1/2 )>
1 i in? (¢/2
+5 /w cos n§<g§{—sfl—(2ff + 1)212?{(2 + (2H+1)(2H+2)%> de

For w > 0 and H > 0, the last integral is bounded by

F x /°° {5*(2H+1) +§*(2H+2)] < Fx [w*QHer*(ZHH)} < too,

with F' > 0. This induces for every w > 0 and H €]0,1]

% cos(né) sin? (£/2) 1 (sin(nw) sin?(%) 1
/w ¢2H+1 g = T O2H+1 +0 <n2> : (20)
We immediately deduce from (20) that for i = 1,2, .., K, with wg1 = oo, we have
wi+1 cos(né) sin? (£/2)
/w_ IS (21)
1 (sin(nw;1)sin?(252L)  sin(nw;) sin?(%4) 1
T A g )0 (i)

From the other hand, consider the first term in the sum in the right hand side of (19). We have

[ e )
0 £2H0+1
90 cos(né) sin” (£/2) dc. (22)

+00 cos(né) sin? (£/2)
- /0 dg — /w €2Ho+1

€2H0+1

1

The first integral correspond to the case of a constant Hurst parameter, that is the usual F.B.M

Let Xy be a F.B.M. with parameter Hy and variance 1, defined by

Lo
Xolt) = G /R ’;Hoﬂ/? W(d¢) fort € R,

with C(Hp) = 7*/2(HoI'(2Hy) sin(7Hp)) ™2, then we have

% cos(né) sin?
cov ((Xo(n + 1) — Xo(n), Xo(1) — Xo(0)) = 02(1H0) /0 ( gHoﬂ(&/?)d§

and (see [29] p. 335) we have the following expansion

cov ((Xo(n +1) — Xo(n), Xo(1) — Xo(0)) = Ho(2Ho — 1) —5—5p; -
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Combined with (20) and (22), for all Hy €]0, 1], we have

w1 cos(né) sin? (£/2)
/0 €2Ho+1 g =
_ 7(2Hy — 1) 1 sin(nwi ) sin?(4) \ 1 1 1
- <'r(2H0) sin(7rH0)> n2—2Ho + ( w%HO"'l n +0 (nz + n3_2H0) ' (23)

Therefore from (21) and (23), for Hy > 1/2, we obtain (5) and if 0 < Hy < 1/2,

cov (Y (n)Y (0))
§ |f§1 2 (Sin(an‘—H) Sin2(w¢2+1) - sin(nw;) sin%%))

i 14+2H; 1 14+2H;
i=1 i+1 Wi
5 [ sin(nwn) sin2(%) 5 sin(nwg) Sinz(wTK)
a0 2HoFT ~ 9K 2R
nod(2Hy — 1 1 1
I'(2Hy) sin(mHp) n 0 n
and (6) is proved. [ |

B.2 Proofs of section 3

Proof. [Property 3.1| First we have

eite — 1) __
dx(A) = /R%(t) [/B(p(g)oW(dE)] dt

_ /JR (16){ /B (e~ 1) @b,\(t)dt] W (de)

But ¢ satisfies [¢ = 0 and it implies (10). Now, we prove that (dx(a,b))per is a stationary

centered Gaussian process. The only problem is the stationarity. It is obvious that

(€)= Va x e " x (a), (24)
Combined with (10), we deduce that for @ > 0 and (b,¥') € IR?, we have:
— dlag)[
ny 7 —ia(b—b')¢
F (dx(a,b)dx(a,b")) aa /]Re 6 ’ d€. (25)

Thus, for a given a > 0, IE (dx(a,b)dx(a,b")) is only depending on (b — b’) which induces that

(dx(a,b))per is a stationary process.

The second part of the property is a consequence of this first part. In fact, when b = ¥/, the

scale a satisfies [Q’ —] Clwi,wit1] and v satisfies Assumption (A1), formula (25) implies
a’ a

2
dv

d(av)
p(v)

E(d(a, ) = za/ﬁ/a

ala
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Bla | .
= 2a/ P(awv)

ala
= ao] / ‘zp av) ~@HAD) gy

— 2H +1 QKH (Qp)

2
‘O’Z"U

and the second part of the property is proved. |

Proof. [Theorem 3.1| (Both first steps follow the same procedure that in Bardet, 2002).
First step: For (a,a’) €]0,00[%, and (b, ') € IR?, using (24) we get:

a a. v _ aa —i(ab— a’b’)gi( ){b\( )
[ (dx(a.b)dx(d V)| = Vad [ ¢ R
C

_ 26
(ab — a'b')?’ (26)
when |ab— a'b'| > 1. The last inequality follows from assumption (A1) and a double integration by

part (with C' > 0). By this way, and with:

L /el

cov (In(a)In(a’)) = NJal[N/a] > ) cov (dX(a pAN)d% (a ’,p’AN))
p=1 p/=1
, el V]
= Nd[N/a] > Y cov? (dx(a,pAn)dx(a,p'AN)),
p=1 p/=1

because dx(.,.) is a Gaussian random variable. Define Ay(a,a’) the set of pair (p,p’) such that

lapAn — a'p’ An| < 1, then for (p,p’) € An(a,a’) we have
cov? (dx(a, pAn)dx(d’,p'Ax)) < Ed%(a,.)[Ed%(d’,.) < M(a,d’)

with M(a,a’) > 0. From the other hand, for a pair (p,p’) satisfying |apAy — a'p’An| > 1, formula
(26) induces that

cov? (dx (a,pAn)dx(d',p'AN)) < C?lapAy — d'p' Ayx|

Second step: we get

cov (In(a)In(a’)) = [N/a]Q[N/a’] ((pp/)g}:v(a a,)COV2 (dg((aapAN)d?X(a/ap/AN)) +

I Z cov? (di(a,pAN)dg((a’,p'AN)))

(p.p")¢AN (a,a')

2 Lo<ayt<N/alo<ayt<nja
= M X il =SNC ST dtdt!
= [N/d][N/d/] ( [An(a,a) A2 //|at av)>1 |at —a't'|*

2 OMN O AN/ N gy
< —dt
= [NJal[N/a (aa/AN i A%Va/o o )

M/ C//

<

NAN | NAN
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i
precisely, let f(¢,t') :/ Q’Z)ngM —i(at—a't’) JANEGe. Then, f2 € C>®(IR?) because 1) satisfies
R

Assumption (Al). More, for (k,

k k!
/ / (fz(“/) — f2(k, k’)) dt dt’
k—1Jk'—1

with K —1 < 0y < kand ¥ — 1 < 6 < K. From obvious computations, it appears that

f of

This induces that NAycov (In(a)In(a’)) — 7p(a,a’) when N — oo, with v,(a,a’) > 0. More
2

(a
£)
) e IN* x IN*,

<2 sup O |,

(t,t")eR?

(g—{ + %) (t, ¢’

2 sup (— + —,) (t,t")| < C Ay with C a positive constant depending only on v, p, amin
ter2 |\ Ot Ot
ad' Ay [N/a] [N/a’]
and amqe. Moreover, from the previous calculations ~ Z Z |f(6p,0,| < C'. Therefore,
p=1 p/=1
IA o [N/a] [N/a] N 2
NANCOV (IN(G,)IN( 2(1(ILA Z Z / ¢( 5)1/}( f) 71 (ap—a'p’ AN§d§
22 PRV
_ R 2
2a%a” [IN/alAn  IN/aJAN Y(a)(a') _iar—arv)
= IS pmilat=atE e \dtdt' + O(A 27
privell A A (/IR EGE ¢ (Bw) D)
Thus,
Ypla,a’) = A}im NApcov (In(a)In(a"))
_ R 2
2q/2 r[N/aA [N/a'lA ! . »
— lim 2a“a / N/ N / ¢(af)¢(g S)efl(atfat)édg dtdt’
N—oo NAp /=0 r |p(§)l
—_ R 2
/ a[N/a]A a’'[N/d'|A / . ,
= 11m 2aa / N/ N / Mq’b(gg)e_z(t—t )Edg dtdt/
N—oo NAN 0 3]

- 2
o 2ad Pa&)(a'E) e
= N NAy /|u|<NAN(NAN) (/IR G df) !

— ~ 2
oy (—Jul) / ¢(a§)¢(af)ez’u§d£> du
lu|<NA R

N 2
_ ¢ §v(a s 2aa’
_ Qaa/ (/ o d§> du+ Jim 5=-0()

from the previous bound of v,(a,a’) > 0. Therefore, we obtain the following central limit theorem

for all m € IN* and (a;j)1<m € [@min, Gmaz]™

2

d¢ L, N (0,T),
N—oo
1<j<m

P (aj€)
p(§)

VB | Infa)-a; [
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with I' = (’Yk,l)lgk,lgm and

— - 2
e e

Third step: Now, we have to prove the tightness of \/ NAy (Inx(a) — Eln(a))
Let amar < a1 < a < ag < Gmin and Ly(a) = VNAN (In(a) — IEIn(a)). Then,

Amin<a<amaz"

IE|Ly(a)—Ly(a1)|>=NAy (varIy(a) + varIn(a1) — 2cov(In(a), In(a1)))
C"(N,a,ay)

:.Yp(ava) + ’Yp(a'lv a'l) - 2'717(“’ al) + NAy )

from (27) and with |C"(N,a,a1)] < C(¥, p, Gmin, Gmaz) (see previously). But (a,a1) — v,(a,a1)
is C*®([@min, @maz)?) because 1) satisfies Assumption (Al). Then, for N large enough it exists a

positive constant D, independent of ¢ and a; such that:
IE|Ly(a)—Ly(a1)|* < Dla — ai).
Therefore, using Cauchy-Schwartz inequality, we get
E|Ly(a)=Ln(a1)| |[Ln(az)—Ln(a)| < Dy/|la — a1l|az — al,
and thus the random function Ly(a), N =1,2,---,, of D([@min, @maz]) are tight by Theorem 15.4

and 15.6 of Billingsley (1968).

Fourth step: The function z + logz is C> on IR’}. Thus, from the Delta-method theorem,
Theorem 3.1 is proved. u
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