Symmetries of Contact Metric Manifolds - Archive ouverte HAL
Article Dans Une Revue Geometriae Dedicata Année : 2003

Symmetries of Contact Metric Manifolds

Florin Belgun
  • Fonction : Auteur
  • PersonId : 829290
Andrei Moroianu
  • Fonction : Auteur
  • PersonId : 828514
Uwe Semmelmann
  • Fonction : Auteur
  • PersonId : 828824

Résumé

We study the Lie algebra of infinitesimal isometries on compact Sasakian and K-contact manifolds. On a Sasakian manifold which is not a space form or 3-Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian structure. For a manifold with K-contact structure, we prove that there exists a Killing vector field of constant length which is not an infinitesimal automorphism of the structure if and only if the manifold is obtained from the Konishi bundle of a compact pseudo-Riemannian quaternion-Kähler manifold after changing the sign of the metric on a maximal negative distribution. We also prove that nonregular Sasakian manifolds are not homogeneous and construct examples with cohomogeneity one. Using these results we obtain in the last section the classification of all homogeneous Sasakian manifolds.
Fichier principal
Vignette du fichier
2003gd.pdf (223.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00126000 , version 1 (23-01-2007)

Identifiants

Citer

Florin Belgun, Andrei Moroianu, Uwe Semmelmann. Symmetries of Contact Metric Manifolds. Geometriae Dedicata, 2003, 101, pp.203-216. ⟨10.1023/A:1026375212252⟩. ⟨hal-00126000⟩
209 Consultations
417 Téléchargements

Altmetric

Partager

More