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SYMMETRIES OF CONTACT METRIC MANIFOLDS

FLORIN BELGUN, ANDREI MOROIANU AND UWE SEMMELMANN

Abstract. We study the Lie algebra of infinitesimal isometries on compact Sasakian
and K–contact manifolds. On a Sasakian manifold which is not a space form or 3–
Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian
structure. For a manifold with K–contact structure, we prove that there exists a
Killing vector field of constant length which is not an infinitesimal automorphism of
the structure if and only if the manifold is obtained from the Konishi bundle of a com-
pact pseudo–Riemannian quaternion–Kähler manifold after changing the sign of the
metric on a maximal negative distribution. We also prove that non–regular Sasakian
manifolds are not homogeneous and construct examples with cohomogeneity one. Us-
ing these results we obtain in the last section the classification of all homogeneous
Sasakian manifolds.

2000 Mathematics Subject Classification. Primary 53C25, 53C26

1. Introduction

There are many interesting geometric situations, which are characterized by the exis-
tence of a Killing vector field with special properties. Examples are Sasakian manifolds,
K-contact manifolds or total spaces of S1-bundles.

In this article we will study the isometry group of a compact Riemannian manifold
admitting a special unit Killing vector field.

The starting point is the simple observation that on a compact Riemannian mani-
fold (M, g) a Killing vector field ξ induces a decomposition of the Lie algebra g :=
Lie(Iso(M)) of the isometry group into eigenspaces of the Lie derivative Lξ. The zero
eigenspace g0 can be identified with the space of Killing vector fields commuting with
ξ.

In the regular case, i.e. where all orbits of ξ are closed and have the same length,
it is easy to show (under some technical restrictions) that g0 is spanned by ξ and the
Killing vector fields of the quotient space M/S1, cf. Lemma 2.3.

The results in the present article were obtained during our visit at Erwin Schrödinger Institute in
Vienna. We express our warmest thanks to the Institute for hospitality and support, and to José
Figueroa O’Farrill for his invitation. The last two authors are members of the European Differential
Geometry Endeavour (EDGE), Research Training Network HPRN-CT-2000-00101, supported by The
European Human Potential Programme.
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The space g0 is thus well understood, at least in the regular case. We then concentrate
on the complement of g0 in g with respect to the decomposition mentioned above. Two
interesting remarks can be made (cf. Lemma 2.4 below): on the one hand, each Killing
vector field from this complement is orthogonal to ξ at every point of M , and on the
other hand, the non–zero eigenvalues for the action of Lξ on g are determined by those
of the field of endomorphisms ϕ := ∇ξ. In particular, if ϕ has no constant non–zero
eigenvalues on M , then g = g0.

In order to study the complement of g0 in g it is thus useful to make further assump-
tions on ϕ. In the remaining part of the paper we consider the case where ϕ defines at
every point of M a complex structure on the orthogonal complement of ξ. Manifolds
admitting such a structure are called K–contact, and among them, those satisfying a
further integrability condition are called Sasakian (see Section 3 for details).

It turns out that the Lie algebra g of a K–contact manifold splits (as a vector space)
into only two subspaces: g = g0 ⊕ g2. We provide an easy proof for the fact that a
compact Sasakian manifold with non-trivial g2 has to be a space of constant curvature
or a 3-Sasakian manifold. Moreover we describe the decomposition of g on 3-Sasakian
manifolds.

In section 4 we characterize K-contact structures carrying Killing vector fields of
constant length in g2. It turns out that these manifolds are obtained from SO(3)-
bundles over pseudo-Riemannian quaternion Kähler manifolds by changing the sign of
the metric. In addition we give an example of K-contact manifold having Killing vector
fields of non-constant length in g2.

In section 5 we study the isometry group on irregular Sasakian manifolds and use this
to obtain in the last section the classification of simply connected compact homogeneous
Sasakian manifolds. Note that this classification was already obtained in [7] under the
slightly stronger assumption that the automorphism group of the Sasakian structure
(rather than the isometry group of the manifold) acts transitively.

2. Manifolds with unit Killing vector fields

Let (Mn, g) be a compact Riemannian manifold carrying a Killing vector field ξ, with
dual 1–form η. We denote by G = Iso(M) the isometry group of M and by g = iso(M)
the Lie algebra of G, identified with the Lie algebra of Killing vector fields on M . Since
G is compact, the adjoint representation of G on g is orthogonal with respect to some
scalar product on g. In particular, the endomorphism Lξ of g is antisymmetric, so iLξ

is a Hermitian endomorphism of gC. Let gC = gC
0 ⊕gC

λ1
⊕ . . .⊕gC

λs
be the decomposition

of gC in eigenspaces for iLξ, where gC

λk
corresponds to the eigenvalue λk and gC

0 to the
eigenvalue 0. This induces a direct sum decomposition

(1) g = g0 ⊕ gλ1
⊕ . . . ⊕ gλs

,
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where Lξ|g0 = 0 and Lξ ◦ Lξ|gλk
= −λ2

k. Note that all λk’s can be chosen to be strictly
positive real numbers. For such a choice, (1) will be called the standard decomposition
of g.

From now on we will always assume that ξ has constant length 1.

Definition 2.1. The vector field ξ is called regular if its flow has closed orbits of con-
stant length. It is called quasi–regular if the flow has closed orbits whose lengths have
jumps. Finally, ξ is called irregular if its flow has a non–closed orbit.

It is easy to see that ξ is regular or quasi–regular if and only if there exists some
p > 0 such that expe(pξ) = e, where e is the unit of G.

We now study in more detail the case where ξ is regular. The flow of ξ defines an
isometric circle action on M and the quotient N := M/S1 of M by this action carries
a Riemannian metric such that the projection M → N is a Riemannian submersion
with minimal fibers. Conversely, every connection 1–form iη on a principal S1–bundle
M over a Riemannian manifold N induces a 1–parameter family of metrics gt on M
turning the bundle projection into a Riemannian submersion with minimal fibers via
the following formula:

(2) gt = gN + t2η ⊗ η.

The metric gt carries a unit Killing vector field whose orbits are closed and have constant
length 2πt. The following ”folkloric” lemma relates the exterior derivative dη and the
curvature of the connection of the S1–bundle M → N .

Lemma 2.2. Let (Mn, g, ξ, η) be as above and denote by 2πℓ the length of the orbits
of ξ. On the S1–principal fibration M → N := M/S1 we define a connection whose
horizontal distribution is ξ⊥. Then the curvature form of this connection is equal to
idη/ℓ.

Conversely, if F is a 2–form in H2(N, Z), let M be the S1–bundle over N with Chern
class [F ] and let iξ denote the vector field dual to the connection form iη of a connection
on M whose curvature form is iF . Then for each t > 0, ξt := ξ/t is a unit Killing vector
field for the metric gt defined by (2), with dual 1–form ηt = η̃. Tts orbits have length
2πt and dηt = d(tθ) = tF .

By rescaling the metric on M , we may assume that the orbits of the Killing vector
field ξ have constant length 2π (this amounts to take t = 1 in the construction above).
The infinitesimal isometries of M which preserve ξ (i.e. the space g0) can be easily
described in the following way:

Lemma 2.3. (cf. [11]) With the notations from Lemma 2.2, let A be a Killing vector
field on M commuting with ξ. Then there exists a unique Killing vector field X on N
and a function f on N (unique up to a constant) such that

(3) df = −XyF
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and A = X∗ + fξ. Conversely, if F is harmonic and N is simply connected, then for
every Killing vector field X on N the equation (3) has a solution f unique up to a
constant and X∗ + fξ is a Killing vector field on M commuting with ξ.

Note: For a vector field X on N , X∗ denotes the horizontal lift of X to M , i.e. the
unique vector field on M orthogonal to ξ which projects onto X.

Proof. Write A = fξ +B with 〈B, ξ〉 = 0. Since Lξ preserves the decomposition TM =
ξ ⊕ ξ⊥, f is actually a function on N and B is projectable on some X ∈ Γ(TN). The
condition ∇A(ξ, ξ) = 0 is automatically satisfied, ∇A(Y ∗, Y ∗) = 0 for every Y ∈ TN
is equivalent to X being Killing on N and finally ∇A(Y ∗, ξ) +∇A(ξ, Y ∗) = 0 for every
Y ∈ TN is equivalent to (3).

To prove the converse we only have to check that d(XyF ) = 0 for every Killing
vector field X on N and harmonic 2–form F . This follows directly from the Hodge
decomposition: the harmonic form LXF (LX commutes with ∆, because X is Killing)
is equal to d(XyF ) + XydF = d(XyF ), which is exact, so they both vanish. �

The previous lemma actually shows that there is a canonical exact sequence

0 → Rξ → g0 → iso(N) → 0.

We now return to the general setting and prove the following simple but very useful
lemma concerning the complement of g0 in g with respect to the standard decomposition
described above.

Lemma 2.4. Let A be a Killing vector field in gλ1
⊕ . . . ⊕ gλs

. Then

1. A is orthogonal to ξ at every point of M .

2. LξA is dual to the 1–form −Aydη.

Proof. 1. It is enough to prove this for A in some fixed gλk
. As before we can write

A = fξ + B with 〈B, ξ〉 = 0, and from the invariance w.r.t. Lξ of the decomposition
TM = ξ⊕ ξ⊥ we deduce that ξ(ξ(f)) = −λ2

kf . On the other hand 0 = 〈∇ξA, ξ〉 = ξ(f),
so f = 0 (as λk 6= 0).

2. Using the first part of the lemma we get for every vector field Y

dη(A, Y ) = Aη(Y ) − Y η(A) − η([A, Y ]) = 〈∇Aξ, Y 〉 − 〈∇Y ξ, A〉

= 〈∇Aξ, Y 〉 + 〈ξ,∇Y A〉 = 〈[A, ξ], Y 〉.

�

If we identify dη with an endomorphism of TM , we see that A has to be an eigenvector
of the symmetric endomorphism dη ◦ dη for the eigenvalue −λ2

k. This shows that the
non-zero coefficients of X in the above “Fourier–type” decomposition are completely
determined by the algebraic behavior of dη.
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Example. If dη ◦ dη has no constant negative eigenvalue on M , then every Killing
vector field on M is an automorphism of the structure (M, ξ) (i.e. g = g0).

Example. For the Hopf fibration (S2n+1, ξ) → CP n, dη is twice the pull–back of the
Kähler form of the base, thus showing that g is actually reduced to g0 ⊕ g2.

Example. Let N be equal to the product of s copies of CP 1 with the Fubini–Study
metric (i.e. round spheres of radius 1/2). Take λ1, . . . , λs to be distinct positive integers
and let M be the Riemannian manifold induced (via the procedure described above) by
the S1 bundle over N with curvature i(λ1ω1 + . . . + λsωs), where ωi is the Kähler form
of the i-th factor. Then the Lie algebra of infinitesimal isometries of M is equal (as
vector space) to g = g0 ⊕ gλ1

⊕ . . . ⊕ gλn
, where g0 is isomorphic to Rξ plus the direct

sum of s copies of su2 and each gλi
is 2–dimensional.

So far we obtained a description of g0 in the regular case and made some general
remarks on the Killing vector fields in the orthogonal complement of g0 . In order to
get further results on this complement it is necessary to impose additional assumptions
on ξ, more precisely on the algebraic behavior of dη . In the remaining sections we
will consider the case where the skew–symmetric endomorphism corresponding to dη
defines a complex structure on the orthogonal complement ξ⊥. This leads to K-contact
structures or, with a further integrability condition to Sasakian structures.

3. Sasakian Manifolds

A Sasakian structure is a special contact structure on a Riemannian manifold. These
structures were studied in the seventies by the Japanese school and, in the last decade,
after the work of Bär [2] and Friedrich et al. [3] on manifolds with Killing spinors and
that of Boyer et al. on 3–Sasakian manifolds [6], they turned out to constitute one of
the most important special geometries, being the odd–dimensional analogues of Kähler
manifolds.

Definition 3.1. A vector field ξ on a Riemannian manifold (M, g) is called a Sasakian
structure if ξ is a Killing vector field of unit length and

(4) ∇·∇ξ = ξ ∧ ·.

In particular, if we apply (4) to two arbitrary vectors and then take the scalar product
with ξ we find that the tensors ϕ := ∇ξ and η := g(ξ, .) are related by

ϕ2 = −Id + η ⊗ ξ.

It is an easy exercise (see e.g. [2]) to check that (M, g) is Sasakian if and only if the
metric cone (M̄, ḡ) defined by M̄ = M ×R+ and ḡ = dr2 + r2g is Kähler. Most experts
today actually prefer to take this last statement as the definition of Sasakian structures,
because it is more geometrical and intuitive.
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Definition 3.2. A triple {ξ1, ξ2, ξ3} of Sasakian structures is called a 3–Sasakian struc-
ture on M if the following conditions are satisfied:

1. The frame (ξ1, ξ2, ξ3) is orthonormal;

2. For each permutation (i, j, k) of signature δ, the tensors ϕi := ∇ξi and ηi := g(ξi, .)
are related by ϕj ϕi = (−1)δ ϕk − ηj ⊗ ξi.

Equivalently, M is 3–Sasakian if and only if the cone M̄ is hyperkähler, and this can
be taken to be the definition as before.

The next lemma gives a sufficient condition for a manifold to be 3–Sasakian. It was
originally proved in [3].

Lemma 3.3. If ξ1 and ξ2 are two orthogonal vector fields defining Sasakian structures,
then the triple {ξ1, ξ2, ξ3 := ∇ξ1ξ2} is a 3–Sasakian structure.

It turns out that on compact manifolds, the norm of a Killing vector field satisfying
(4) is a “characteristic function of the sphere”. In other words, we have:

Lemma 3.4. (see [15]) Let ξ be a Killing vector field on a compact manifold M satisfying
(4). If M has non–constant sectional curvature, then ξ has constant length (so it defines
a Sasakian structure on M after a homothetic change of metric).

The following result is a synthesis of several papers studying the isometries of Sasakian
manifolds [15], [14]. We will include here a short proof using the considerations in
Section 2.

Theorem 3.5. Let M be a Sasakian manifold.

• If M is neither 3–Sasakian nor a space form, then every infinitesimal isometry
of M is an infinitesimal automorphism of the Sasakian structure (i.e. g = g0).

• If M is 3–Sasakian but has non–constant sectional curvature, then there is a Lie
algebra decomposition g = g′ ⊕ su2, where su2 is generated by the three Sasakian
vector fields and g′ consists of the automorphisms of the 3–Sasakian structure
(i.e. Killing vector fields commuting with the Sasakian vector fields).

Proof. 1. From Section 2 it follows that g = g0 ⊕ g2 (since dη ◦ dη = −4). Let X
be a non-zero element of g2 and Y := 1

2
LξX. Then LY ξ = −LξY = −2L2

ξX = 2X,
so taking the Lie derivative with respect to Y in (4) yields that X satisfies (4), too.
From Lemma 3.4 we deduce that either M is a space form, or X has constant length
(and consequently defines a Sasakian structure). By Lemma 3.3, this implies that M is
3–Sasakian, a contradiction. So g2 = ∅.

2. Let now M be 3–Sasakian. From the first part of the above proof, we deduce that
for each i = 1, 2, 3, g can be decomposed as g = gi

0⊕gi
2. Now suppose that there is some

vector field in say g1
2 which is not a linear combination of ξ2 and ξ3. The arguments above

show that X defines a Sasakian structure, so the cone M̄ admits both a hyperkähler
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structure and another Kähler structure. On the other hand, the cone is either irreducible
or flat (see [9]). In the last case, M has to be a space form. Otherwise, it cannot be
locally symmetric (being Ricci–flat), so the existence of another Kähler structure on a
hyperkähler manifold yields a further holonomy reduction, which is impossible from the
Berger Holonomy Theorem. This proves that for every permutation {i, j, k} of {1, 2, 3},
gi

2 = 〈ξj, ξk〉. Denote by g′ := ∩gi
0. It is clear that each ξi preserves g′ and that

g = g′ ⊕ 〈ξ1, ξ2, ξ3〉. �

4. K–contact manifolds

Definition 4.1. 1. A contact metric structure on a Riemannian manifold (M, g) is a
unit length vector field ξ such that the endomorphism ϕ defined by g(ϕ·, ·) := 1

2
dη(·, ·)

and the 1–form η := 〈ξ, ·〉 are related by

(5) ϕ2 = −1 + η ⊗ ξ.

In other words, ϕ defines a complex structure on the distribution orthogonal to ξ.

2. A contact metric structure (M, g, ξ, ϕ) is called K–contact if ξ is Killing.

3. A contact metric 3–structure is an orthonormal frame of contact metric structures
(ξ1, ξ2, ξ3) such that for each permutation (i, j, k) of signature δ, the tensors ϕi := −∇ξi

and ηi := g(ξi, .) are related by ϕi ϕj = (−1)δ ϕk + ηj ⊗ ξi. Equivalently, the endomor-
phisms ϕi satisfy the quaternionic relations on the distribution orthogonal to {ξ1, ξ2, ξ3}.

It is well–known (and straightforward to prove) that M has a contact metric structure
if and only if the cone M̄ is almost Kähler. As remarked in [8], using this observation
one can easily retrieve (with a shorter proof) the following result of Kashiwada [12]: a
contact metric 3–structure is necessarily 3–Sasakian! Indeed, the cone M̄ of a contact
metric 3–structure M is almost hyperkähler and a lemma by Hitchin [10] (see below)
states that every almost hyperkähler manifold is hyperkähler. So M̄ is hyperkähler, i.e.
M is 3–Sasakian.

We now construct a family of examples of Riemannian manifolds admitting 3 orthog-
onal (non–integrable) K–contact metric structures which will play an important role in
this section. This construction makes essential use of pseudo–Riemannian geometry.

Fundamental example. Let (Q, h) be a pseudo–Riemannian manifold with holo-
nomy Spp,q · Sp1 ⊂ SO4p,4q. The simplest examples of such manifolds are, as in the
Riemannian case, discrete quotients of the pseudo–Riemannian quaternionic hyperbolic
spaces HHp,q := Spp,q+1/Spp−1,q+1 · Sp1 (the case p = 0, which is excluded in these
examples, can be thought of as being the quaternionic projective space (HP q,−can),
with the negative metric). Other explicit homogeneous examples were constructed by
Alekseevski and Cortes (see [1]).

The holonomy condition is equivalent to the existence of a parallel sub–bundle E of
End(Q) locally spanned by three endomorphisms satisfying the quaternionic relations.
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The Konishi construction (see [13]) carries over verbatim to the pseudo–Riemannian
situation. The SO3–principal bundle S associated to E admits a pseudo 3–Sasakian
metric of signature (4p, 4q + 3). (The definition of a pseudo 3–Sasakian structure is the
same as that of a 3–Sasakian structure, except that the metric is pseudo–Riemannian
and the 3 Killing vector fields are time–like).

Let us now choose an orthogonal decomposition of the tangent space of Q, TQ =
D+ ⊕ D−, such that h is positive on D+ and negative on D−. On S there is an
induced orthogonal decomposition TS = D∗

+ ⊕ D∗

−
⊕ V , where V denotes the vertical

distribution. Obviously, this decomposition is invariant under each of the Sasakian
Killing vector fields. We define a Riemannian metric g by changing the sign of h on
D∗

−
⊕ V . The Sasakian vector fields, say ξi, are still Killing vector fields for g, and the

endomorphisms associated to 1
2
dηi via the new metric are still complex structures on

ξ⊥i .

Nevertheless, this change of metric has definitely altered the integrability of the con-
tact structures (ξi,

1
2
dηi), and moreover, the three K–contact structures ξi on (Q, g) do

not define a contact metric 3–structure, since the corresponding endomorphisms ϕi do
not satisfy the quaternionic relations on the horizontal distribution (they satisfy the
quaternionic relations on D− and the anti–quaternionic relations on D+). The Rie-
mannian structures obtained in this way are called weakly K–contact 3–structures.

The following result was proved by Hitchin in the Riemannian case [10]. The proof
given in [10] works without changes in the pseudo–Riemannian setting.

Lemma 4.2. (pseudo–Riemannian Hitchin Lemma) A pseudo–Riemannian almost hy-
perkähler manifold is hyperkähler.

(Three almost complex structures Ji on a pseudo–Riemannian manifold (M, h) define
an almost hyperkähler structure if the Ji satisfy the quaternionic relations and the
associated Kähler forms h(Ji·, ·) are closed.)

Consider now a K–contact structure, denoted ξ1 for later convenience, on a compact
manifold M . The results in Section 2 show that one can decompose the Lie algebra
iso(M) as iso(M) = g0 ⊕ g2, where Lξ1|g0

= 0 and (Lξ1 ◦ Lξ1)|g2
= −4.

Theorem 4.3. Let (M, g, ξ1, η1, ϕ1) be a K–contact manifold and let iso(M) = g0 ⊕ g2

be the above decomposition of the Lie algebra of infinitesimal isometries of M . Then
g2 contains a Killing vector field of constant length if and only if M admits a weakly
K–contact 3–structure.

Proof. The reverse implication is clear from the previous example. Conversely, let ξ2 ∈
g2 be a Killing vector field of unit length, and denote by ξ3 := 1

2
Lξ1ξ2, which obviously

has unit length, too. By the definition of g2 we have Lξ1ξ3 = −2ξ2. The Killing vector
field ζ := [ξ2, ξ3] can be computed as follows. On one hand, by the Jacobi identity we
have Lξ1ζ = 0, and

−〈ζ, ξ1〉 = dη1(ξ2, ξ3) = 2〈∇ξ2ξ1, ξ3〉 = −2.
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Finally, for every Y ⊥ ξ1, we have

〈ζ,∇Y ξ1〉 = −〈∇Y ζ, ξ1〉 = 〈∇ξ1ζ, Y 〉 = 〈∇ζξ1, Y 〉

= 〈−ϕ1(ζ), Y 〉 = 〈ζ, ϕ1(Y )〉 = −〈ζ,∇Y ξ1〉,

thus showing that ζ = 2ξ1. Consequently, for each permutation (i, j, k) of (1, 2, 3) of
signature δ we have [ξi, ξj] = 2δξk. Now, if we denote by ηi := 〈ξi, ·〉, ϕi := −∇ξi = 1

2
dηi,

and take the Lie derivative with respect to ξ2 and ξ3 in (5) we get

(6) ϕ1ϕ3 + ϕ3ϕ1 = η1 ⊗ ξ3 + η3 ⊗ ξ1,

and

(7) ϕ1ϕ2 + ϕ2ϕ1 = η1 ⊗ ξ2 + η2 ⊗ ξ1.

Taking Lξ2 in (6) and using (5) yields ϕ2
2 = −1+η2⊗ξ2 and similarly ϕ2

3 = −1+η3⊗ξ3.
Finally, taking Lξ3 in (6) gives

(8) ϕ2ϕ3 + ϕ3ϕ2 = η2 ⊗ ξ3 + η3 ⊗ ξ2,

which shows that the ϕi’s are three anti–commuting complex structures on the distribu-
tion D orthogonal to ξ1, ξ2, ξ3. From now on we restrict our attention to the distribution
D. The endomorphism ϕ1ϕ2ϕ3 has square 1, so we can decompose D as D = D+ ⊕D−,
where D± is the eigenspace of ϕ1ϕ2ϕ3 corresponding to the eigenvalue ±1. That is, the
restrictions of ϕi to D+ (resp. D−) satisfy the anti–quaternionic (resp. quaternionic)
relations. If D+ is empty, we are done, since in that case (ξ1, ξ2, ξ3) define a contact
metric 3–structure, so by the theorem of Kashiwada, M has to be 3–Sasakian.

The interesting case is when D+ is not empty. We then define a pseudo–Riemannian
metric h on M by changing the sign of g on D+. The three vector fields ξi are still
Killing vector fields for h and the endomorphisms associated to 1

2
dηi via h satisfy the

quaternionic relations on D. The cone (M̄, h̄) is then a pseudo–Riemannian almost
hyperkähler manifold. From Lemma 4.2 we deduce that (M̄, h̄) is hyperkähler, so (M, h)
is pseudo 3–Sasakian. From the construction of h it follows immediately that (M, g)
has a weakly K–contact 3–structure. �

In the Sasakian case we have seen that the component g2 of the Lie algebra of Killing
fields is either 0– or 2–dimensional, or the manifold has constant sectional curvature.
Moreover, in the first case, any Killing vector field in g2 has constant length. The
K-contact structures do not have, in general, such a rigidity property:

Proposition 4.4. There exist deformations of the round metric on S2n+1, n ≥ 3, which
are non Sasakian K-contact structures for which the component g2 of the Lie algebra of
the isometry group contains Killing fields of non-constant length.

Proof. Let V = V1 ⊕ V2 ≃ R2n+2, be decomposed in the (2n − 2)-dimensional subspace
generated by the first coordinates, and the 4-dimensional subspace generated by the
last ones, and let S2n+1 be the standard sphere in V .
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Let g ∼= so(V1) ⊕ Rξ be the Lie subalgebra of so(V ) consisting of the Killing vector
fields of S2n+1 depending only on the first 2n − 2 coordinates, plus the Killing vector
field ξ, defined by the standard Sasakian structure of the sphere (and corresponding to
the standard complex structure J on R2n+2 ∼= Cn+1). We will deform the metric on
S2n+1, keeping it G-invariant (where G is the associated Lie subgroup to g). Because
2n − 2 ≥ 4, there are elements in g which do not commute with ξ. On the other hand,
these Killing vector fields do not have constant length, because they all vanish on some
totally geodesic 3-sphere.

We proceed as follows: Let X0, J0X0 be non-trivial vector fields on S3, seen as the
standard sphere in V2

∼= R4, commuting with and orthogonal to ξ0, the Killing field
defined by the standard Sasakian structure on S3 (and corresponding to the matrix J0,
the standard complex structure on R4). Such vectors exist, and are the lifts of some
vector fields on S2, the orbit space of ξ0 on S3. We consider now the vector fields X, JX
on S2n+1, depending only on the last 4 coordinates in R2n+2, and which project onto
X0, J0X0 via the projection V → V2. The vectors X, JX are then G-invariant. Let U
be the open set of S2n+1 where X and JX do not vanish, and let F : S2n+1 → R be a
non-trivial smooth G-invariant function whose support lies in U .

We construct a new metric, gF , on S2n+1 defined by the field A of symmetric endomor-
phisms of TS2n+1 relating it to the standard metric. On U , A has eigenvalues eF , e−F

and 1, corresponding respectively to the eigenvectors X, JX and the vectors orthogonal
to them, and on S2m+1 r U , A is the identity. Since A is clearly G-invariant, gF is a
G-invariant metric. The pair (gF , ξ) is a K-contact structure because ξ (viewed both as
a vector and as a 1-form) and dξ (viewed as a 2-form) remain the same after the above
deformation, and the endomorphism φF of ξ⊥, identified with the form dξ, changes on
X and on JX, but remains a complex structure on ξ⊥ (namely, φF (X) = e−2F JX and
φF (JX) = −e2F X).

Of course, this induces an almost complex structure on CPn, the space of orbits of
ξ, which is never integrable, because it is not analytic (it coincides with the standard
complex structure on the non-empty interior of the set where F vanishes, and is different
on the open set where F 6= 0). So the constructed K-structure is not Sasakian (this is
also a consequence of Theorem 3.5). �

5. Irregular Sasakian manifolds

In this section (M, g, ξ) denotes an irregular Sasakian manifold. Consider the expo-
nential orbit O of ξ in G := Iso(M) and denote by T the closure of O in G. Since G is
compact, T is a compact subgroup of G. As the closure of an Abelian subgroup, T is
itself Abelian, thus isomorphic to a quotient of a torus T̃ by a finite subgroup Γ ⊂ T̃ .
Let Λ ⊂ g be the Lie algebra of T and T̃ .

Lemma 5.1. The subalgebra Λ is central in g.



SYMMETRIES OF CONTACT METRIC MANIFOLDS 11

Proof. As every 3–Sasakian manifold (or Sasakian space form) is at least quasi–regular,
Theorem 3.5 shows that g = g0. Thus, for every X ∈ g and t ∈ R, Adexp(tξ)X = 0. By
continuity we obtain AdgX = 0 for every g ∈ T , so adY X = 0 for every Y ∈ Λ. �

Lemma 5.2. The closure of the generic orbit on M of the Sasakian vector field has
dimension larger than 1.

Proof. This amounts to say that the generic orbit of the compact Lie group T defined
above cannot be a circle. Let ζ ∈ Λ be not collinear to ξ. Suppose that the T–orbit of
each point in an open set U of M is a circle. Then ζ is a multiple of ξ on U , say ζ = fξ.
As ζ is Killing as well, we deduce that the symmetric part of df ⊗ ξ vanishes on U , so
ζ is a constant multiple of ξ on U , and hence on M , a contradiction. �

A classical and non–trivial result by Boothby and Wang [5] states that any contact
structure whose automorphism group acts transitively has to be regular. We give here
a simple proof of a slightly stronger version of this result for the case of Sasakian
structures.

Proposition 5.3. An irregular Sasakian manifold is not homogeneous as Riemannian
manifold.

Proof. Let ζ ∈ Λ be as before and consider a point x ∈ M where ζx is not collinear to
ξx (the existence of x follows from the previous lemma). Consider an arbitrary Killing
vector field X. By Lemma 5.1 X, ξ and ζ are commuting Killing vector fields, hence
〈∇ζξ, X〉 = 0 (trivial application of the Koszul formula). In other words, every Killing
vector field is orthogonal at x to the vector φ(ζ)x = −(∇ζξ)x, which is non-zero by the
assumption on ζ . Thus M cannot be homogeneous. �

In the remaining part of this section we construct an example of irregular Sasakian
manifold of cohomogeneity one, showing that the theorem above is optimal.

Examples of cohomogeneity one irregular Sasakian manifolds. We use
the following equivalent definition for a Sasakian structure: it is a K-contact structure
for which the underlying CR structure is integrable. Recall that a CR structure is —
in the most general setting — a field of complex structures on a field of hyperplanes,
and J := ∇ξ on Q := ξ⊥ gives us such a structure on a K-contact manifold (M, g, ξ).
Moreover, the integrability condition for the CR structure (M, Q, J) is given by

N(X, Y ) = 0, ∀X, Y ∈ Q, where N : Λ2Q → Q,

4N(X, Y ) := [JX, JY ] − J [JX, Y ]Q − J [X, JY ]Q − [X, Y ],

where X, Y are extended to vector fields contained in Q, and AQ denotes the component
in Q of the vector field A. It is then clear that N ≡ 0 is equivalent to the integrability
of the space of local orbits of ξ, which is almost Kähler for a K-contact structure, and
Kähler for a Sasakian one.
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Let Cn+1 ∼= V = V1 ⊕ V2 be a splitting in two complex vector spaces of dimensions
1, resp. n, and let J0 be the element of u(n + 1) ⊂ so(2n + 2) corresponding to the
multiplication by i on V , and let J1 be the element of u(n + 1) corresponding to the
multiplication by i on V1, and acting trivially on V2. They correspond to Killing vector
fields on the round sphere (S2n+1, g0) ⊂ Cn+1 denoted by T0, resp. T1.

The first one is the Killing vector field associated to the standard Sasakian structure
on S2n+1 and it is easy to see that T := T0 + aT1, where a ∈ R r Q∩ (0, 1) is a nowhere
vanishing Killing vector field, whose generic orbits are dense in a torus generated by the
action of T0 and T1. Moreover, T is obviously transverse to Q := T⊥

0 and commutes with
T0. We define a new metric g on the sphere such that T has unit length, is orthogonal
to Q, and g|Q := αg0|Q, where α := g0(T, T0)

−1 and g0 is the standard metric on S2n+1.
This new metric is T0- and T -invariant, so ∇T is a skew-symmetric endomorphism of
Q.

If we extend two arbitrary orthogonal vectors X, Y in Q by local vector fields con-
tained in Q, orthogonal to each other and commuting with T0, we get by Koszul’s
formula

2g(∇XT, Y ) = g([X, T ], Y ) − g([T, Y ], X) − g(T, [X, Y ]) = −g(T, [X, Y ]).

Here the other terms vanish as T is Killing and X is orthogonal to Y . Similarly we get
2g0(∇

0
XT0, Y ) = −g0(T0, [X, Y ]), and we can decompose [X, Y ] = g0(T0, [X, Y ])T0 + W ,

where W ∈ Q. Then g(T, [X, Y ]) = g0(T0, [X, Y ])g(T, T0). It follows then that ∇XT =
∇0

XT0 = J0(X), i.e. it is the standard CR structure on the sphere, which is integrable.
Hence g is Sasakian.

On the other hand, the metric g is invariant under the action of U(1) × U(n), where
the two factors act on V1, resp. on V2, and the generic orbits of this group on S2n+1

have codimension 1, thus g has cohomogeneity one, as claimed.

6. Homogeneous Sasakian Manifolds

The aim of this section is to prove the following classification result.

Theorem 6.1. A simply connected compact Sasakian manifold is homogeneous (as
Riemannian manifold) if and only if it is the canonical S1–bundle of a homogeneous
simply connected compact Hodge manifold with the metric described in Lemma 2.2.

Proof. If N is a homogeneous simply connected compact Hodge manifold, we can assume
(after possibly rescaling the metric by an integer constant) that the cohomology class
[F ] of the Kähler form is not an integer multiple of any class in H2(N, Z). The Gysin
sequence then shows that the canonical S1–bundle M of N is simply connected. It is
well–known that M has a Sasakian structure, and Lemma 2.3 shows that every Killing
vector field X on N induces a Killing vector field X∗ on M , projectable onto X. As
the vertical vector field is itself a (non–vanishing) Killing vector field, it follows that for
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every point x ∈ M and for every vector A ∈ TxM there exists a Killing vector field ζ
on M such that ζx = A. Thus the orbit through every point of the (compact) isometry
group of M is open, hence M is homogeneous.

Conversely, let (M, g, ξ) be a homogeneous simply connected compact Sasakian man-
ifold. We can assume that M is not 3–Sasakian, since in that case M has to be the
canonical S1–bundle of a generalized flag manifold (see [6]). From Proposition 5.3, M
is either regular or quasi–regular (i.e. the exponential orbit of ξ in the isometry group
is a circle). Denote by ϕt the isometry induced by exp(tξ) on M and let p be the least
positive number such that ϕp = IdM . If M is quasi–regular, there exists a positive
number q < p and a point x ∈ M such that ϕq(x) = x. For every vector A ∈ TxM there
exists a Killing vector field ζ on M such that ζx = A. By our assumption, every Killing
vector field on M commutes with ξ, so (ϕq)∗ζ = ζ . This shows that ϕq has to be the
identity on M , a contradiction.

We have thus proved that the Sasakian structure is regular. The quotient N of M
by the Sasakian flow is Kähler (see [3]) and simply connected (by the exact homotopy
sequence). From Lemma 2.3 and Theorem 3.5 we see that every Killing vector field on
M is of the form X∗+fξ, where X is a Killing vector field on N . For every point x ∈ N
and vector Y ∈ TxN , take some y in the fiber over x; as M is homogeneous, there exists
a Killing vector field ζ on M such that ζy = Y ∗. If we write ζ = X∗ +fξ with X Killing
vector field on N , this last equation shows that Xx = Y . So N is homogeneous. �

Remark. As Charles Boyer pointed out to us, the above result was also obtained in [7]
under the slightly stronger assumption that the automorphism group of the Sasakian
structure acts transitively.

Remark. The classification of simply connected compact homogeneous Kähler man-
ifolds can be found in [4]. Every such manifold has to be an orbit of the co–adjoint
representation of a compact connected Lie group, endowed with its canonical complex
structure. Note that every such co–adjoint orbit carries several homogeneous Kähler
metrics, but there is always a canonically defined invariant Kähler–Einstein metric, thus
at least one Hodge structure.
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