An induction-based control for genetic algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 1996

An induction-based control for genetic algorithms

Résumé

This paper presents a Machine Learning approach to control genetic algorithms. From examples gathered through spying evolution or experimenting on populations, induction extracts a rule-based characterization of which evolutionary events are good or bad for evolution. Such rule base allows for further generations to escape most disruptive or unproductive changes, according to a civilized rather than Darwinian evolution scheme. An evolutionary event is described as mutating a chromosome (at given bit—string positions) or crossing over two chromosomes (with given crossing points), and labeled by comparing the fitness of the offspring with that of its parents. Knowledge induced from such events allows to predict the effects of further operators, thereby filtering further undesirable events. Experiments on some artificial problems are discussed.
Fichier principal
Vignette du fichier
Sebag1996.pdf (258.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00116438 , version 1 (23-03-2024)

Licence

Identifiants

Citer

Michèle Sebag, Marc Schoenauer, Caroline Ravisé. An induction-based control for genetic algorithms. Evolution Artificielle '95, 1996, Brest, France. pp.100-119, ⟨10.1007/3-540-59286-5_85⟩. ⟨hal-00116438⟩
104 Consultations
22 Téléchargements

Altmetric

Partager

More