
HAL Id: hal-00116438
https://hal.science/hal-00116438

Submitted on 23 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An induction-based control for genetic algorithms
Michèle Sebag, Marc Schoenauer, Caroline Ravisé

To cite this version:
Michèle Sebag, Marc Schoenauer, Caroline Ravisé. An induction-based control for genetic algo-
rithms. Evolution Artificielle ’95, 1996, Brest, France. pp.100-119, �10.1007/3-540-59286-5_85�. �hal-
00116438�

https://hal.science/hal-00116438
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Induction-based Control for Genetic
Algorithms

(Extended Abstract)

Michele Sebag1
•

3 and Marc Schoenauer2•
3 and Caroline Ravise1

•
3

1 LMS, Ecole Polytechnique, 91128 Palaiseau, France
2 CMAP, Ecole Polytechnique, 91128 Palaiseau, France

3 LRI, Universite de Paris-Sud, Batiment 490, F-91405 Orsay, France

Abstract. This paper presents an induction-based control of genetic al­
gorithms:
1- examples of the behavior of the genetic operators (crossover and mu­
tation) are gathered;
2- rules characterizing disruptive operators are induced from the gath­
ered examples;
3- last, these rules are used to reject operators classified disruptive.
Evolution is thereby speeded up. Experimental results on the well-known
Royal Road problem and on a GA-deceptive problem are presented.1 Introduction

Genetic Algorithms (GAs) are widely known as powerful optimization algorithms
[1]. As such, they have been applied in the Machine Learning community, mainly
to build classifiers systems since the seminal work of Holland [3].

In contrast with using GAs to reach ML goals, we propose to use induc­
tive learning to control and speed up GAs. The main drawback of GAs is their
slowness. This slowness is partly due to the fact that most good solutions are
fleetingly discovered [7] : genetic operators, i.e. crossover and mutation, stochas­
tically discover promising individuals but make them disappear as well.

This paper describes an induction-based control of crossover and mutation,
achieved in a 3-step process : (a) a set of examples about the behavior of opera­
tors is gathered, then (b) rules characterizing disruptive operators are induced,
and last, (c) these rules are used during the next evolution steps to reject oper­
ators classified disruptive.

The reader is assumed familiar with the basic GA; we refer to [1] for the terms
used throughout this paper. Section 2 briefly illustrates the difficulties encoun­
tered by GAs on two problems [6, 14]. Section 3 poses the problem of controlling
a GA as an induction problem. Section 4 presents an experimental validation
on the problems introduced in section 2. Section 5 discusses the induction-based
approach with respect to some related works [4, 12]. 2 Motivation
Let us introduce on two problems the main difficulties encountered by GAs.

1

The Royal Road problem. The Royal Road problem was conceived by
Mitchell and Holland [6, 7]; this fitness landscape is supposedly easy for GAs
because of (a) its schema structure and (b) the fact that high-order schemas are
obtained by crossing over low-order schemas. However, it is not easy: low-order
schemas must be discovered again and again before they combine.

GA-deceptive problems. The idea lying behind GA-deception, is that a
GA can be misled by a particular fitness landscape [I]. If the average fitness of
schema H1 is greater than that of schema H2, the schema theorem [2] states
that H1 will be oversampled in the genetic population compared to H2• But if
H2 actually contains the optimum, the optimum will likely be missed. More­
over, as claimed by Whitley [14], all challenging problems are, at least partially,
deceptive.

The desired control should both decrease the chances of disruptive evolution
(in order to overcome fleeting discoveries) and the need for selection (in order
to limit the misleading of GAs by deceptive problems). 3 Controlling a GA through Induction

Which Examples ? The only available information (when dealing with
non-artificial problems) is provided by observing the course of evolution. This
observation does tell how a given operator behaves on given individual(s): it
behaves well if the best offspring is fitter than the best parent, badly if the
best offspring is less fit than the (best) parent, otherwise it is inactive. Such
behavioral examples permit an induction-based control of genetic search:
• Disruptive operators will likely be observed to behave badly;
• From examples of bad and good operators, rules can be induced by a classical
inductive algorithm [5, 8].
• In further evolution steps, these rules allow to reject operators classified bad,
thereby decreasing the chances of disruptive evolution.

This induction-based control thus speeds up evolution, by preventing it to go
backward. Another possibility consists in rejecting operators classified inactive,
thus preventing evolution to "get asleep". This latter heuristic was found very
useful in the last stages of evolution: when population tends to be homogeneous,
most operators are inactive; rejecting them brings a significant improvement [10].

How to Represent Examples ? In a binary frame, a crossover operator c
can be represented by a bitstring (c1, .. CN), termed crossover mask [13]. When
crossing over individuals x and y, the first offspring inherits bit i from parent
x iff Ci = 1, otherwise it inherits bit i from parent y (and symmetrically for
the second offspring). Similarly, a mutation operator m can be represented by
a mutation mask (m1, . ,mN): when mutating individual x, bit i is flipped iff
mi = 1.

An example is so corn posed of (a) the description of the operator and (b) the
class of the operator, bad, good or inactive according to the effects of the operator
w.r.t. the individual(s) it is experimented on. This representation leads to a
control termed general control. Another possibility is to include the description of

2

the (best) parent the operator applies on, into the example description; this leads
to more consistent examples since the behavior of an operator likely depends on
the individual(s) it applies on. This latter possibility leads to another kind of
control, termed dedicated control, which cannot be discussed here for the sake of
brevity; more details can be found in [11]. Coupling GA and Induction. The coupling involves the following steps:
1. !nit. During the first M generations, a classical genetic evolution takes place.
2. Examples Gathering. Let P be the size of the genetic population; either

2.1 P crossover examples are gathered, by randomly generating 2-point crossover
masks and applying them on the current population; or

2.2 P mutation examples are gathered, by randomly generating mutation
masks and applying them on the current population.
3. Knowledge Building. From these behavioral examples, rules are induced.
4. Knowledge-guided Evolution. In the next generations, crossovers or mutations
classified bad according to the current rule-set, are rejected.
5. Transition. After M generations, the population has evolved and the rule-set
may be no longer accurate. Go to step 2.

4 Experiments

We used a GA based on standards [1], with selection by roulette wheel with
linear fitness scaling ; the selective pressure is set to values 1.2 and 2. Two­
point crossovers are performed at a rate of 0.6. Mutation is performed at a
rate of 0.05 per individual : in a mutated individual, every bit is flipped with
probability 0.016. Evolution stops either after 1000 generations or when the
fitness is constant over the population.
We used a star-like learner called Constraint-Based Induction [9]. Its complexity
is O(N x P2), N being the size of the problem and P the number of examples.

Reference results are provided by running a standard GA (a) without control
and (b) with a GA-based control, inspired from Spears [12]. We experimented
both the crossover and the mutation control (results including simultaneous
control of crossovers and mutations can be found in [11]). All results are averaged
on 30 independent runs. Parameters Royal Road Ugly Problem Sel. Pop. No Cross. Control Mut. No Cross. Control Mut. Press. Size Control GA ML Control Control GA ML Control 1.2 100 10 43 20 57 10 7 3 53 (32) (35) (38) (71) (8) (15) (10) (20) 2.0 100 7 10 3 17 20 17 17 53 (7) (12) (11) (46) (3) (3) (3) (9)

Table 1. Percentage of success {nb of evaluations in thousands}

Experiments consider the Royal Road problem (2) and the Ugly problem [14]
composed of 10 concatened elementary GA-deceptive problems. Table 1 shows
the percentage of success (hit the optimum), together with the total number of

3

function evaluations needed to reach the optimum, for a population size 100.
Partial conclusions are that: control is not useful when the population size is
large; but control can significantly improves the results obtained with a small
population. The control of mutation appears significantly more efficient than
both kinds of crossover control, especially on the GA-deceptive problem. 5 Discussion
The crossover control has been addressed in two ways in the literature. Lev­
enick [4] proposes to separate low-order schemas by zones of bits termed in­
trans, not involved in the fitness computation. The disruptive effects of n-point
crossovers can thereby be significantly limited [7]. However, such modifications
of the problem representation require rather good insights in its solution (e.g. a
priori knowledge of the position of the relevant low-order schemas) which greatly
limits the method.

Spears [12] proposes to add an extra bit to the representation of individual;
this extra bit rules out whether the individual is to be crossed according to a
2-point or a uniform crossover. Genetic search thus optimizes both the individual
itself, and the kind of crossover most suited to this individual. Note however,
that induction allows for a much more precise control: rules can tell where an
operator should or should not intervene (depending on the individuals at hand in
the case of dedicated control). Of course, a GA-based control could be similarly
precise, but at the expense of doubling the size of the representation.

The cost of the induction-based control is decomposed in two parts. In terms
of fitness calculations, it implies an overhead of (M + 1)/M, if learning is per­
formed every M generations. Besides, it implies the learning and classification
cost - that are polynomial and do not depend on the complexity of the fitness
function. So, when dealing with expensive fitness functions, the extra-cost of an
induction-based control should be negligible compared to the savings in terms
of the number of fitness calculations needed to reach a good solution. 6 Conclusion
This paper has presented an induction-based control of GAs. On the ML side,
this work is an application of induction; the difficulty consisted in posing the
problem of controlling a GA as a machine learning problem.

On the GA side, it appears that induction offers powerful and flexible means
to control a GA. Moreover, this approach gives unexpected insights into the
roles respectively devolved to crossover and mutation along genetic search. The
fact that mutation control is much more effective than crossover control is coun­
terintuitive, since the crossover rate is rnuch grater than the mutation rate. A
tentative explanation is that nothing can counteract the disruptive effects of mu­
tation, except control; in opposition, the sampling of the population can limit to
a great extent, the disruptive effects of crossover (especially in the end of evolu­
tion). Much more experiments are needed, of course, to validate this hypothesis.

4

References 1. D. E. Goldberg. Genetic algorithms in search, optimization and machine learning.Addison Wesley, 1989.2. J. Holland. Adaptation in natural and artificial systems. University of MichiganPress, Ann Arbor, 1975.3. J. Holland. Escaping brittleness : The possibilities of general purpose learningalgorithms applied to parallel rule-based systems. In R.S Michalski, J.G. Carbonell,and T.M. Mitchell, editors, Machine Learning : an artificial intelligence approach,volume 2. Morgan Kaufmann, 1986.4. J. R. Levenick. Inserting introns improves genetic algorithm success rate : Takinga cue from biology. In R.K. Belew and L.B. Booker, editors, Proceedings of the 4th International Conference on Genetic Algorithms. Morgan Kaufmann, 1991.5. R.S. Michalski. A theory and methodology of inductive learning. In R.S Michal­ski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning : an artificialintelligence approach, volume 1. Morgan Kaufmann, 1983.6. M. Mitchell, S. Forrest, and J.H. Holland. The royal road for genetic algorithms :Fitness landscapes and ga performance. In F. J. Valera and P. Bourgine, editors,Proceedings of the First European Conference on Artificial Life-93, pages 245-254.MIT Press/Bradford Books, 1993.7. M. Mitchell and J.H. Holland. When will a genetic algorithm outperform hill­climbing? In S. Forrest, editor, Proceedings of the 5th International Conferenceon Genetic Algorithms. Morgan Kaufmann, 1993.8. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.9. M. Sebag. Using constraints to building version spaces. In De Raedt L. andBergadano F., editors, Proceedings of ECML-94, European Conference on MachineLearning, pages 257-271. Springer Verlag, 1994.10. M. Sebag and M. Schoenauer. Controlling crossover through inductive learning.In H.P. Schwefel, editor, Proceedings of PPSN-94, Parallel Problem Solving fromNature. Springer-Verlag, LNCS 866, 1994.11. M. Sebag and M. Schoenauer and C. Ravise. A Note on the Control of GAs byInduction. Internal Report, LMS, Ecole Polytechnique, january 1995.12. W. M. Spears. Adapting crossover in a genetic algorithm. In R.K. Belew andL.B. Booker, editors, Proceedings of the 4th International Conference on GeneticAlgorithms. Morgan Kaufmann, 1991.13. G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the 3,·dInternational Conference on Genetic Algorithms, pages 2-9, 1989.14. D. Whitley. Fundamental principles of deception in genetic search. In R.K. Belewand L.B. Booker, editors, Proceedings of the 4th International Conference on Ge­netic Algorithms. Morgan Kaufmann, 1991.
5

