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Abstract. This paper presents an induction-based control of genetic al­
gorithms: 
1- examples of the behavior of the genetic operators ( crossover and mu­
tation) are gathered;
2- rules characterizing disruptive operators are induced from the gath­
ered examples;
3- last, these rules are used to reject operators classified disruptive.
Evolution is thereby speeded up. Experimental results on the well-known
Royal Road problem and on a GA-deceptive problem are presented.1 Introduction 

Genetic Algorithms (GAs) are widely known as powerful optimization algorithms 
[1]. As such, they have been applied in the Machine Learning community, mainly 
to build classifiers systems since the seminal work of Holland [3]. 

In contrast with using GAs to reach ML goals, we propose to use induc­
tive learning to control and speed up GAs. The main drawback of GAs is their 
slowness. This slowness is partly due to the fact that most good solutions are 
fleetingly discovered [7] : genetic operators, i.e. crossover and mutation, stochas­
tically discover promising individuals but make them disappear as well. 

This paper describes an induction-based control of crossover and mutation, 
achieved in a 3-step process : (a) a set of examples about the behavior of opera­
tors is gathered, then (b) rules characterizing disruptive operators are induced, 
and last, (c) these rules are used during the next evolution steps to reject oper­
ators classified disruptive. 

The reader is assumed familiar with the basic GA; we refer to [1] for the terms 
used throughout this paper. Section 2 briefly illustrates the difficulties encoun­
tered by GAs on two problems [6, 14]. Section 3 poses the problem of controlling 
a GA as an induction problem. Section 4 presents an experimental validation 
on the problems introduced in section 2. Section 5 discusses the induction-based 
approach with respect to some related works [4, 12]. 2 Motivation 
Let us introduce on two problems the main difficulties encountered by GAs. 

1



The Royal Road problem. The Royal Road problem was conceived by 
Mitchell and Holland [6, 7]; this fitness landscape is supposedly easy for GAs 
because of (a) its schema structure and (b) the fact that high-order schemas are 
obtained by crossing over low-order schemas. However, it is not easy: low-order 
schemas must be discovered again and again before they combine. 

GA-deceptive problems. The idea lying behind GA-deception, is that a 
GA can be misled by a particular fitness landscape [I]. If the average fitness of 
schema H1 is greater than that of schema H2, the schema theorem [2] states 
that H1 will be oversampled in the genetic population compared to H2• But if 
H2 actually contains the optimum, the optimum will likely be missed. More­
over, as claimed by Whitley [14], all challenging problems are, at least partially, 
deceptive. 

The desired control should both decrease the chances of disruptive evolution 
(in order to overcome fleeting discoveries) and the need for selection (in order 
to limit the misleading of GAs by deceptive problems). 3 Controlling a GA through Induction 

Which Examples ? The only available information (when dealing with 
non-artificial problems) is provided by observing the course of evolution. This 
observation does tell how a given operator behaves on given individual(s): it 
behaves well if the best offspring is fitter than the best parent, badly if the 
best offspring is less fit than the (best) parent, otherwise it is inactive. Such 
behavioral examples permit an induction-based control of genetic search: 
• Disruptive operators will likely be observed to behave badly;
• From examples of bad and good operators, rules can be induced by a classical
inductive algorithm [5, 8].
• In further evolution steps, these rules allow to reject operators classified bad,
thereby decreasing the chances of disruptive evolution.

This induction-based control thus speeds up evolution, by preventing it to go 
backward. Another possibility consists in rejecting operators classified inactive, 
thus preventing evolution to "get asleep". This latter heuristic was found very 
useful in the last stages of evolution: when population tends to be homogeneous, 
most operators are inactive; rejecting them brings a significant improvement [10]. 

How to Represent Examples ? In a binary frame, a crossover operator c 
can be represented by a bitstring (c1, .. CN ), termed crossover mask [13]. When 
crossing over individuals x and y, the first offspring inherits bit i from parent 
x iff Ci = 1, otherwise it inherits bit i from parent y (and symmetrically for 
the second offspring). Similarly, a mutation operator m can be represented by 
a mutation mask (m1, . ,mN ): when mutating individual x, bit i is flipped iff 
mi = 1. 

An example is so corn posed of ( a) the description of the operator and (b) the 
class of the operator, bad, good or inactive according to the effects of the operator 
w.r.t. the individual(s) it is experimented on. This representation leads to a
control termed general control. Another possibility is to include the description of
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the (best) parent the operator applies on, into the example description; this leads 
to more consistent examples since the behavior of an operator likely depends on 
the individual(s) it applies on. This latter possibility leads to another kind of 
control, termed dedicated control, which cannot be discussed here for the sake of 
brevity; more details can be found in [11]. Coupling GA and Induction. The coupling involves the following steps: 
1. !nit. During the first M generations, a classical genetic evolution takes place.
2. Examples Gathering. Let P be the size of the genetic population; either

2.1 P crossover examples are gathered, by randomly generating 2-point crossover
masks and applying them on the current population; or 

2.2 P mutation examples are gathered, by randomly generating mutation 
masks and applying them on the current population. 
3. Knowledge Building. From these behavioral examples, rules are induced.
4. Knowledge-guided Evolution. In the next generations, crossovers or mutations
classified bad according to the current rule-set, are rejected.
5. Transition. After M generations, the population has evolved and the rule-set
may be no longer accurate. Go to step 2.

4 Experiments 

We used a GA based on standards [1], with selection by roulette wheel with 
linear fitness scaling ; the selective pressure is set to values 1.2 and 2. Two­
point crossovers are performed at a rate of 0.6. Mutation is performed at a 
rate of 0.05 per individual : in a mutated individual, every bit is flipped with 
probability 0.016. Evolution stops either after 1000 generations or when the 
fitness is constant over the population. 
We used a star-like learner called Constraint-Based Induction [9]. Its complexity 
is O(N x P2), N being the size of the problem and P the number of examples. 

Reference results are provided by running a standard GA (a) without control 
and (b) with a GA-based control, inspired from Spears [12]. We experimented 
both the crossover and the mutation control (results including simultaneous 
control of crossovers and mutations can be found in [11]). All results are averaged 
on 30 independent runs. Parameters Royal Road Ugly Problem Sel. Pop. No Cross. Control Mut. No Cross. Control Mut. Press. Size Control GA ML Control Control GA ML Control 1.2 100 10 43 20 57 10 7 3 53 (32 ) (35) (38) (71) (8 ) (15 ) (10) (20) 2.0 100 7 10 3 17 20 17 17 53 (7) (12) (11) (46) (3) (3) (3) (9) 

Table 1. Percentage of success {nb of evaluations in thousands} 

Experiments consider the Royal Road problem (2) and the Ugly problem [14] 
composed of 10 concatened elementary GA-deceptive problems. Table 1 shows 
the percentage of success (hit the optimum), together with the total number of 
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function evaluations needed to reach the optimum, for a population size 100. 
Partial conclusions are that: control is not useful when the population size is 
large; but control can significantly improves the results obtained with a small 
population. The control of mutation appears significantly more efficient than 
both kinds of crossover control, especially on the GA-deceptive problem. 5 Discussion 
The crossover control has been addressed in two ways in the literature. Lev­
enick [4] proposes to separate low-order schemas by zones of bits termed in­
trans, not involved in the fitness computation. The disruptive effects of n-point 
crossovers can thereby be significantly limited [7]. However, such modifications 
of the problem representation require rather good insights in its solution ( e.g. a 
priori knowledge of the position of the relevant low-order schemas) which greatly 
limits the method. 

Spears [12] proposes to add an extra bit to the representation of individual; 
this extra bit rules out whether the individual is to be crossed according to a 
2-point or a uniform crossover. Genetic search thus optimizes both the individual
itself, and the kind of crossover most suited to this individual. Note however,
that induction allows for a much more precise control: rules can tell where an
operator should or should not intervene ( depending on the individuals at hand in
the case of dedicated control). Of course, a GA-based control could be similarly
precise, but at the expense of doubling the size of the representation.

The cost of the induction-based control is decomposed in two parts. In terms 
of fitness calculations, it implies an overhead of (M + 1)/M, if learning is per­
formed every M generations. Besides, it implies the learning and classification 
cost - that are polynomial and do not depend on the complexity of the fitness 
function. So, when dealing with expensive fitness functions, the extra-cost of an 
induction-based control should be negligible compared to the savings in terms 
of the number of fitness calculations needed to reach a good solution. 6 Conclusion 
This paper has presented an induction-based control of GAs. On the ML side, 
this work is an application of induction; the difficulty consisted in posing the 
problem of controlling a GA as a machine learning problem. 

On the GA side, it appears that induction offers powerful and flexible means 
to control a GA. Moreover, this approach gives unexpected insights into the 
roles respectively devolved to crossover and mutation along genetic search. The 
fact that mutation control is much more effective than crossover control is coun­
terintuitive, since the crossover rate is rnuch grater than the mutation rate. A 
tentative explanation is that nothing can counteract the disruptive effects of mu­
tation, except control; in opposition, the sampling of the population can limit to 
a great extent, the disruptive effects of crossover (especially in the end of evolu­
tion). Much more experiments are needed, of course, to validate this hypothesis. 
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