An advanced evolution should not repeat its past errors - Archive ouverte HAL
Communication Dans Un Congrès Année : 1996

An advanced evolution should not repeat its past errors

Résumé

A safe control of genetic evolution consists in preventing past errors of evolution from be­ing repeated. This could be done by keeping track of the history of evolution, but main­taining and exploiting the complete history is intractable. This paper investigates the use of machine learning (ML), in order to extract manageable information from this history. More pre­cisely, induction from examples of past trials and errors provides rules discriminating er­rors from successful trials. Such rules allow to a priori estimate the desirability of future trials; this knowledge can support powerful control strategies. SeveraI strategies of ML-based control are ap­plied to a genetic algorithm, and tested on the RoyaI Road, a GA-deceptive, and a com­binatorial optimization problem. Comparing mutation control with crossover control yields unexpected results.
Fichier principal
Vignette du fichier
Ravise1996.pdf (298.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00116421 , version 1 (31-08-2021)

Licence

Identifiants

  • HAL Id : hal-00116421 , version 1

Citer

Caroline Ravisé, Michèle Sebag. An advanced evolution should not repeat its past errors. 13th International Conference on Machine Learning (ICML96), 1996, Strasbourg, France. pp.400-408. ⟨hal-00116421⟩
144 Consultations
42 Téléchargements

Partager

More