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Abstract

A safe control of genetic evolution consists in

preventing past errors of evolution from be-

ing repeated. This could be done by keeping

track of the history of evolution, but main-

taining and exploiting the complete history

is intractable.

This paper investigates the use of machine

learning (ML), in order to extract manage-

able information from this history. More pre-

cisely, induction from examples of past trials

and errors provides rules discriminating er-

rors from successful trials. Such rules allow

to a priori estimate the desirability of future

trials; this knowledge can support powerful

control strategies.

Several strategies of ML-based control are ap-

plied to a genetic algorithm, and tested on

the Royal Road, a GA-deceptive, and a com-

binatorial optimization problem. Compar-

ing mutation control with crossover control

yields unexpected results.

1 INTRODUCTION

Control of evolution aims at keeping some balance be-

tween the exploitation and exploration tasks devoted

to evolutionary search (Goldberg 1989). This control

involves both the selective pressure

1

and the disrup-

tiveness of evolution operators

2

, which must be su�-

cient to respectively ensure convergence, and discour-

age premature convergence (De Jong & Spears 1992).

Only boolean search spaces and crossover and muta-

tion operators are considered throughout this paper.

1

The average number of o�spring allowed for the best

individual(s)

2

The chances for o�springs not to convey the same rel-

evant information as parent(s).

Controlling the disruptiveness of crossover and muta-

tion can be done at three levels:

� The search space can be designed so as to decrease

the disruptiveness of operators regarding relevant

schemas; e.g. allowing don't care zones, termed

introns, decreases the disruptiveness of both mu-

tation and crossover (Levenick 1991, Koza 1994).

� Disruptiveness is directly a�ected by the crossover

and mutation rates. These may be adjusted by

means of brute force (Scha�er et al. 1989) (still

the most usual method), through statistical es-

timates (Grefenstette 1995), adaptation (Grefen-

stette 1986, Davis 1989), or evolution itself (Lee

& Takagi 1993).

� Finally, the e�ects of crossover and mutation can

be adjusted by evolution itself (Scha�er & Mor-

ishima 1987, Spears 1991, Schwefel 1981, Fogel

et al. 1992): this only requires to include con-

trol choices in the search space. Evolution can

thereby optimize for free the type of crossover

(Spears 1991), or the mask of crossover (Scha�er

& Morishima 1987), or the variance of mutation

(Schwefel 1981, Fogel et al. 1992) most suited to

an individual.

The control of evolution presented in this paper aims

at adjusting the e�ects of crossover and mutation, and

is derived from a common sense remark: what has

been done with bad results in the past (e.g., give birth

to an individual that was not to be retained in the

population), should not be repeated. Preventing evo-

lution from repeating its past errors constitutes a safe

control, i.e. a control that cannot mislead evolution.

However, maintaining and exploiting the list of past

errors of evolution is intractable. Therefore, the his-

tory of evolution must be summarized and saved into

a tractable form. This paper investigates the use of

machine learning (ML) to this end; more precisely, in-

duction from examples (Michalski 1983, Mitchell 1982)

is used to extract rules from the past errors and trials
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of evolution. Such rules allow to a priori estimate the

desirability of future trials; by means of this estimate,

several control strategies, termed ML-based controls,

are allowed to direct the next steps of evolution.

The paper is organized as follows. Section 2 describes

the automatic extraction of rules about evolution, from

examples obtained through experimenting on a popu-

lation or spying evolution. The use of such knowledge

in order to guide the next evolution steps is discussed,

and a hybrid algorithm interleaving evolution and in-

duction is proposed. Section 3 presents an experimen-

tal study of several ML-based controls of evolution.

Besides two well-studied GA problems, the Royal Road

(Mitchell et al. 1993, Mitchell & Holland 1993) and a

GA-deceptive problem (Whitley 1991), a combinato-

rial optimization problem is considered: the multiple

knapsack problem (Khuri et al. 1994, Petersen 1967).

The scope and limitations of ML-based control are dis-

cussed in section 4, with respect to related work de-

voted to the control of evolution (Grefenstette 1986,

Scha�er & Morishima 1987, Spears 1991) and cultural

algorithms (Reynolds 1994, Cavaretta 1994).

2 KNOWLEDGE-CONTROLLED

EVOLUTION

ML-based control of evolution is grounded on the fol-

lowing remark: evolution is made of constructive and

destructive events (crossovers and mutations). This

section �rst shows how ML, more precisely inductive

learning, can be used to characterize the classes (sets)

of constructive and destructive events, using rules in-

duced from examples. These rules provide an a priori

estimate of the class, good (for constructive) or bad

(for destructive), of new incoming events. How such

rules can be used dynamically by evolution, is then

discussed.

2.1 INDUCTIVE LEARNING

Let us �rst briey introduce inductive learning (see

(Michalski 1983, Quinlan 1986) for a thorough presen-

tation).

Examples are points of the search space which have

been classi�ed (e.g. by an expert). The goal of in-

duction is to extract rules from training examples; a

rule can be viewed as a schema of the search space

associated to a given class. A rule R covers an exam-

ple i� the example belongs to the schema of R. A rule

generalizes an example, i� it covers this example and

they both belong to the same class.

Table 1 shows some examples in f0; 1g

6

belonging to

classes good and bad, together with a rule. Induction

attempts to optimize a quality function involving sev-

eral features: (a) Generality, i.e. order of the schema

in the rule; (b) Signi�cance, i.e. number of examples

Table 1 : Induction from examples

E

1

1 1 1 0 0 1 good

E

2

0 0 0 1 1 1 good

E

3

1 1 0 0 1 1 bad

E

4

1 0 0 0 1 1 bad

E

5

0 0 0 0 1 1 good

R ? ? ? 0 1 ? bad

the rule generalizes. (R generalizes E

3

and E

4

), and

(c) Accuracy, i.e. ratio of generalized to covered ex-

amples (R covers E

3

; E

4

and E

5

; its accuracy is 2/3).

Induction proceeds by exploring the training examples

either in a top-down or in a bottom-up fashion. In the

top-down approach (Quinlan 1986), one builds rules or

decision trees by repeatedly selecting the most discrim-

inant gene, i.e. the gene whose value gives maximal

information regarding the class of the examples. In

the bottom-up approach (Michalski 1983), one starts

from a given example and �nds out the rules that gen-

eralize this example and maximize some user-supplied

quality function. The examples generalized by these

rules are then removed from the training set, and an-

other example is considered. The learning algorithm

used in this paper is a bottom-up algorithm that de-

termines all rules maximally general with a given pre-

scribed (user-supplied) accuracy; a disjunctive formal-

ism allows to characterize such rules with polynomial

complexity (Sebag 1996).

Induction ultimately allows for classifying any point

E in the search space: E is associated with the class

of the rules covering E, (with majority vote in case of

conicts). In case where E is not covered by any rule,

it is classi�ed unknown.

2.2 EXAMPLES ABOUT EVOLUTION

In order to apply inductive learning, we need examples

relevant to evolution, and easy to gather. The possi-

bility investigated in this paper is to take as examples

the elementary events of evolution, namely the birth

of new individuals through crossover or mutation.

Description of examples. A crossover event is de-

�ned by a pair of parents and the crossover mask ap-

plied to these parents. Following Syswerda (1989),

a crossover c can be represented by a binary mask

(c

1

; : : : c

N

), c

i

2 f0; 1g:

x

1

: : : x

N

y

1

: : : y

N

!

x

0

1

: : : x

0

N

y

0

1

: : : y

0

N

with

x

0

i

= x

i

; y

0

i

= y

i

if c

i

= 1

x

0

i

= y

i

; y

0

i

= x

i

otherwise

Likewise, a mutation event is de�ned by a parent

and the mutation applied to this parent. A muta-

tion can also be represented through a binary mask

m = (m

1

; ::m

N

), such that x

1

: : : x

N

! x

0

1

: : : x

0

N

with :

x

0

i

=

�

1� x

i

if m

i

= 1

x

i

otherwise
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Both kinds of events can then be represented by the op-

erator mask and the parent(s). In this paper, the de-

scription of an example consists of the operator mask,

and optionally the parent the operator applies to (only

the �ttest parent in the crossover case).

Examples must then be classi�ed in order to permit

induction. It seems natural, as far as learning intends

to serve control, to classify events according to whether

they contribute to the current optimization task. The

choice made in this paper is the following: the class of

an event depends on the way the �tness of o�spring

compares to the �tness of parent(s). The class of an

event is:

� good if the (best) o�spring has higher �tness than

the (best) parent,

� bad if the (best) o�spring has lower �tness than the

(best) parent;

� inactive if the (best) o�spring and the (best) parent

have the same �tness.

Acquisition of examples. At the moment, examples

are gathered through experiments on a given popula-

tion, termed reference population:

1. An operator mask is randomly generated accord-

ing to the parameters of the evolutionary algo-

rithm (e.g. mutation rate, n-point crossover or

uniform crossover,...); inactive operators are re-

jected (e.g. mask 00:::0);

2. One or two chromosomes (depending on whether

the operator is mutation or crossover) are ran-

domly selected in the reference population;

3. The operator is applied according to the mask and

parent(s) selected. The �tness of the o�spring is

computed and compared to that of the parent(s).

This comparison determines the class of the event,

good, bad or inactive;

4. The example composed of the operator mask, op-

tionally the (�ttest) parent, and the associated

class, is stored

3

.

2.3 RULES ABOUT EVOLUTION

Rules are induced from the gathered examples. Only

signi�cant rules (covering more than one example) are

retained.

3

Note that crossing over parent

1

with parent

2

accord-

ing to a given crossover mask may happen to be good,

while crossing over parent

1

with parent

3

according to the

same crossover mask is bad. Then, if only one parent (say

parent

1

) is considered in the example description, one gets

two examples with identical descriptions belonging to dis-

tinct classes, i.e. inconsistent examples. Inconsistencies

are even more likely, if the parent is omitted from the ex-

ample description. Fortunately many learning algorithms

can deal with a limited amount of inconsistencies, so this

is not a real limitation.

Scope of the rules. Table 2 shows examples of 2-

point crossovers together with a rule induced from

these examples.

Table 2 : Induction from examples of crossover

Chromosome Mask Class

E

1

1 0 1 0 1 0 1 0 1 1 1 1 good

E

2

1 1 1 1 0 0 0 0 0 1 1 1 good

E

3

1 1 1 0 1 1 1 0 1 1 1 1 bad

E

4

1 1 1 1 0 0 0 0 1 1 1 1 bad

R 1 1 1 ? ? ? ? 0 1 ? ? ? bad

Rule R states that : The crossover of an individual in

schema H = 111??? according to a crossover mask in

schema ?01 ? ??, gives a bad result, i.e. the o�springs

are less �t than the parents. This can be interpreted

as: don't set a crossing point between bits 2 and 3 if

the parent belongs to schema H .

Rules reect the reference population: R cannot be

learnt before schema H is discovered, and will hardly

be learnt if many individuals in the population belong

to H .

ML-based control. Such rules enable to a priori es-

timate whether a future event (crossover or mutation)

is bad, good, or inactive. This estimate can accommo-

date several control strategies:

� Favoring desirable events, by actuating only good

events. However, this strategy would likely break

the balance between exploration and exploitation

in favor of the latter.

� Limiting the disruptiveness of operators, by re-

jecting bad events. This control strategy is

termed classical.

� Increasing the diversity of the population, by re-

jecting inactive events. This control strategy is

termed modern.

Neither classical nor modern control actually breaks

the balance between exploration and exploitation:

rather, the rules delineate regions where exploration

or exploitation have led to bad or null results. This al-

lows to biase both exploration and exploitation toward

other regions. ML-based control involves two kinds of

cost:

� The acquisition of K examples implies at most

2�K �tness computations. The number of exam-

ples considered by induction is experimentally set

to the number P of individuals in the population.

(This extra cost could be avoided if examples were

gathered through spying evolution instead of ex-

perimenting on the reference population).

� The cost of induction from examples (in O(P

2

�

N), where N denotes the dimension of the search

space, for the learner used in our experiments (Se-

bag 1996).
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Limitations. The presented approach can fail in two

ways: control may be disabled, or, even worse, mis-

leading.

Control is disabled when induction fails to deliver sig-

ni�cant or usable rules. This may be the case if the

reference population (2.2) does not contain relevant

schemas; then no trends about disruptive or inactive

operators can be learnt. It may also happen that all

acquired examples fall in the same class; discriminant

induction then does not apply.

A much worse case is that of misleading control, dis-

couraging the discovery of optimal regions: control

would then be properly deceptive. The deceptivity

of control is to blame on the rules. Rules may become

globally erroneous, for instance if the reference popula-

tion is too di�erent from the populations undergoing

control. (Similarly, the estimations made from ran-

dom individuals may be unreliable as evolution goes

toward regions of better and better �tness (Grefen-

stette 1995)).

Rules may also be locally erroneous, since they gen-

eralize rather than compact the available examples.

However, should the rules only compact examples,

they would also allow for very few classi�cations,

thereby leading to a disabled control.

Some of these limitations are addressed by the follow-

ing coupling of evolution and induction.

2.4 INTERLEAVING EVOLUTION AND

INDUCTION

We propose to distinguish three phases in the \game"

of evolution.

The beginning of the game is characterized by a (rel-

atively) high probability of getting o�spring more �t

than parents. During this phase, evolution obviously

needs not be controlled. Practically, the �rst genera-

tions do not undergo any control.

ML-control then waits until relevant schemas appear,

so that signi�cant rules can be learnt. This prevents

the �rst risk of disabled control.

The middle of the game is characterized by a

high probability of getting o�spring less �t than par-

ents. During this phase, relevant schemas likely have

emerged, but not yet crowded the population. The

main concern here is to limit the disruptiveness of

operators, which can be done through classical ML-

control (discarding disruptive operations).

The end of the game is characterized by a (rela-

tively) high probability of getting o�spring as �t as

their parents. During this phase, the population is

getting homogeneous. A main concern would then be

to preserve the diversity of the population, which can

be done through modern ML-control (discarding inac-

tive operations).

The deceptivity of control is partially prevented

through periodically updating the rules. Every M

generations, the reference population is set to the cur-

rent population and new examples are gathered. If

these new examples do not enable induction (charac-

terized by: the fraction of examples in the majority

class exceeds some user-supplied threshold D, with

D < 100%) then control is disabled. The next M

generations undergo darwinian evolution.

Otherwise, if the age of evolution is quali�ed as \mid-

dle of the game" (characterized by: the fraction of in-

active examples is less than some user-supplied thresh-

old I , with I � D), then classical ML-control is per-

formed in order to limit disruptiveness during the next

M generations, termed classical period.

Otherwise, the age of evolution is quali�ed as \end of

the game" and modern control is performed in order

to preserve diversity during the next M generations,

termed modern period.

The number M of successive generations controlled

through the same rules (in case of classical or mod-

ern periods) is experimentally set to 3: a large value

of M may lead to a deceptive control in the last gen-

erations of the period while small values ofM increase

the overall cost of controlled evolution, without de�-

nite bene�ts.

ML-controlled evolution can then be viewed as a mix-

ture of darwinian, classical and modern periods. The

occurrences of darwinian periods are governed by pa-

rameter D: as D decreases, the majority class tends

to be represented by more than D% of the examples.

Similarly, the occurrences of modern periods are gov-

erned by parameter I .

3 EXPERIMENTAL VALIDATION

The aim of the presented experiments is twofold. The

behavior of ML-controlled evolution is studied through

varying values of D and I , which allows to compare

di�erent mixtures of darwinian, classical and modern

periods. In addition, this approach gives a unique op-

portunity to study the roles respectively devoted to

mutation and crossover, by comparing what happens

when mutations only, then crossovers only, are con-

trolled.

Three problems are considered: the Royal Road prob-

lem (Mitchell et al. 1993), a GA-deceptive problem

(Whitley 1991), and a combinatorial optimization

problem (Khuri et al. 1994).

3.1 EXPERIMENTAL SETTINGS

The evolutionary algorithm is a standard GA (Gold-

berg 1989) with bit-string encoding, roulette wheel se-

lection with �tness scaling, two-points crossover at a
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rate of 0.6 with both o�springs replacing the parents.

Mutation is performed at a rate of 0.005. The evo-

lution stops after 15; 000 �tness evaluations. Fitness

scaling is used with a selective pressure of 1.2 or 2.

The size of the population is 25.

The ML algorithm used, called DiVS for Disjunctive

Version Space, is described in detail in (Sebag 1996).

Acquisition of examples and induction are performed

every 3 generations, the �rst three generations being

darwinian.

The results are given in terms of percentage of suc-

cess over 15 independent runs (success is de�ned as

hitting the maximum, known for all considered prob-

lems). The dynamics of evolution is visualized by plot-

ting the average best �tness (over 15 runs) obtained for

a given number of �tness calculations. These include of

course the extra calculations required by ML-control.

Several evolution schemes are compared: A classical

GA �rst (legend GA) that serves as reference. Then

two GAs with a GA-based control of crossover are ex-

perimented: the crossover control described by Spears

(Spears 1991) (legend Sp) where an additional bit

commands the kind of crossover, uniform or 2-point,

to be applied on the individual ; and the crossover

control described by Scha�er and Morishima (Scha�er

& Morishima 1987) (legend S-M) where individuals

are augmented by the crossover mask to be applied

to them. Last, four schemes of ML-based control are

experimented:

� Control applies to crossovers only, and the un-

derlying rules are induced from examples of

crossovers only (legend X-X).

� Control applies to crossovers and mutations, and

the underlying rules are induced from examples of

crossovers only (legend X-XM).

� Control applies on mutations only, and the un-

derlying rules are induced from examples of mu-

tations only (legend M-M).

� Control applies on crossovers and mutations, and

the underlying rules are induced from examples of

mutations only (legend M-XM).

The fact that a given kind of operation can be con-

trolled through rules learnt from operations of another

kind, can be justi�ed as follows. Mutating an individ-

ual x through a mutation mask m can be viewed as

crossing-over x with its complementary :x through

crossover mask c = m (see also Jones 1995). This im-

plies that rules learnt from mutations enable an exces-

sively severe control of crossovers (x is usually crossed

with an individual nearer to x than :x; and crossover

gives two o�springs), and conversely, rules learnt from

crossovers enable a loose control of mutations. In both

cases, the control is still worth trying.

3.2 THE ROYAL ROAD

The Royal Road problem was designed by Holland and

Mitchell (Mitchell et al. 1993) to study in detail the

combination of features most adapted to GA search

(laying a Royal Road). An analysis of unexpected dif-

�culties of this problem can be found in (Mitchell &

Holland 1993, Forrest & Mitchell 1993).

Table 3 shows the results obtained on the Royal Road

problem, modi�ed as in (Mitchell & Holland 1993), for

selective pressure (s:p:) 1.2 and 2. Results indicated

for ML-controlled evolutions correspond to the aver-

age of the results obtained for D = 95% and I in

f50%; 67%; 95%g (see Table 4 for detailed results).

Table 3: The Royal Road. Percentage of success of GA

with and without control

Controlled GA

GA Ctrl ML Ctrl

s.p. GA Sp S-M m-m m-mx x-x x-xm

1.2 80 83 73 93 95 55 44

2 93 100 100 100 100 95 84

Obviously, there is little room for control when the

classical GA is e�cient, i.e. for selective pressure 2.

But globally, the ML-control built from examples of

crossovers (X �X and X � XM) is harmful, and in

any case much less e�cient than other GA-based con-

trols of crossover.

In contrast, the ML-control built from examples of mu-

tations (M �M and M �MX) achieves the same re-

sults as GA-based control for selective pressure 2., and

signi�cantly outperforms other evolution schemes for

selective pressure 1.2.

The inuence of parameters D (controlling the occur-

rences of darwinian periods) and I (controlling the oc-

currences of modern periods), is shown in Table 4, and

discussed in 3.5.

Table 4: The Royal Road. Detailed results of ML-based

control. Selective pressure = 1.2

D 50% 67% 95%

I 50% 50% 67% 50% 67% 95%

M �M 73 60 93 93 100 87

M �MX 47 80 73 100 87 100

X �X 33 47 27 60 53 53

X �XM 40 73 80 33 47 53

3.3 A GA-DECEPTIVE PROBLEM

An elementary deceptive �tness is de�ned on 
 =

f0; 1g

3

, by F(x) = 3 if x = 111; F(x) = 2 for x in

0 ? ?, and F(x) = 0 otherwise. The deceptive problem

we considered is composed of 10 concatenated elemen-

tary deceptive problems (Whitley 1991).

The percentages of success are indicated in Table

5. Results of ML-controlled schemes are averaged
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over 45 runs, corresponding to D = 95% and I in

f50%; 67%; 95%g (detailed results for selective pres-

sure 1.2 are given in Table 6).

Table 5: A GA-deceptive problem. Percentage of success

of GA with and without control

Controlled GA

GA Ctrl ML Ctrl

s.p. GA Sp S-M m-m m-mx x-x x-xm

1.2 80 83 87 93 93 61 42

2 93 90 87 100 100 58 49

Table 6: A GA-deceptive problem. Detailed results of

ML-based control. Sel. pres.= 1.2

D 50% 67% 95%

I 50% 50% 67% 50% 67% 95%

M �M 87 73 93 100 80 100

M �MX 93 93 80 93 87 100

X �X 40 53 40 73 57 53

X �XM 27 7 47 27 13 87

3.4 THE MULTIPLE KNAPSACK

PROBLEM

The multiple knapsack problem (Khuri et al. 1994) is

a combinatorial optimization problem de�ned as fol-

lows:

� Let P knapsacks have respective capacities c

1

::c

P

,

� Let O denote a set of N objects, the cost of which

is respectively p

1

::; p

N

,

� Let w

i;j

be the overall dimension of object i regard-

ing knapsack j;

Determine a subset of O, noted X = x

1

; ::x

N

, with x

i

boolean, that is feasible, i.e. satis�es the constraints

relative to the maximal capacities of all knapsacks, and

maximizes the overall pro�t:

Max f

N

X

i=1

p

i

:x

i

; 8j = 1::P;

N

X

i=1

w

i;j

x

i

< c

j

:g

Much attention has been paid to evolutionary con-

strained optimization (Schoenauer & Xanthakis 1993).

A usual heuristic consists in reducing the �tness of non

feasible individuals by a penalty term. We considered

a multiplicative penalization:

F (X) =

8

<

:

P

N

i=1

p

i

x

i

if X is feasible

r

2

P

N

i=1

p

i

x

i

otherwise

where r is the percentage of satis�ed constraints

Table 7 reports the results obtained on the fourth

problem de�ned by Petersen (1967), with N = 20 and

P = 10. Similar results are obtained on the other

data sets. Again, results indicated for ML-based con-

trols are averaged on several values of D and I , which

are detailed in Table 8.

Table 7: The knapsack problem. Percentage of success of

GA with and without control

Controlled GA

GA Ctrl ML Ctrl

s.p. GA Sp S-M m-m m-mx x-x x-xm

1.2 13 20 0 29 28 9 17

2 0 0 0 19 11 0 4
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Figure 1 : The knapsack problem. Dynamics of evolution.

Table 8: The knapsack problem. Detailed results of

ML-based control. Sel. pres.= 1.2

D 50% 67% 95%

I 50% 50% 67% 50% 67% 95%

M �M 27 20 20 40 40 27

M �MX 47 13 33 20 27 27

X �X 7 13 7 7 13 7

X �XM 13 33 - 13 27 13

The dynamics of evolution shows that ML-based con-

trol of mutations reaches sooner better solutions (Fig-

ure 1: selective pressure is 1.2. ; D = I = 95%).

3.5 REMARKS

On these three arti�cial problems, ML-based control

built from examples of mutations signi�cantly and con-

sistently improves on classical GA and other GA-based

controls. On the other hand, ML-based control built

from examples of crossovers proves disastrous.

In the Royal Road and the GA-deceptive problems, the

best option is that of permanent classical control (D =

I = 95%), preventing disruptive mutations only. In the

combinatorial optimization problem, the best control

is also classical, but prevents disruptive crossovers as

well as disruptive mutations.

4 DISCUSSION

From the above results, it appears that controlling the

disruptiveness of mutations can be more e�ective than

that of crossovers. After an attempt to explain this

fact, we focus on the ML aspects of the presented con-

trol, with respect to some related works.

4.1 CONTROLLING MUTATION

The disruptiveness of crossovers seems at �rst to de-

serve more attention than that of mutations, since

the crossover rate is one or several orders of magni-

tude higher than the mutation rate (Levenick 1991,

Spears 1991, Scha�er & Morishima 1987, De Jong &

Spears 1992, Sebag & Schoenauer 1994). However,

population homogenization can e�ciently counteract

the disruptiveness of crossovers, and more so in the

end of evolution. On the other hand, nothing can ever

counteract the disruptiveness of mutations, but con-

trol. Controlled mutation thus appears as a powerful

means to prevent the loss of near-optimal schemas in

the end of evolution. This way, it improves the \mem-

ory" of evolution.

Such e�ect was so far expected from selection only: the

loss of good individuals can also be prevented through

elitist replacement or strong selection.

If the memory of evolution is too e�cient, due to con-

trolled mutation, elitism, or strong selection, this fa-

vors premature convergence. But controlled mutation

leaves less room than selection to premature conver-

gence: First, mutation tends to increase the diversity

of a homogeneous population; in contrast, selection

and elitism always decrease this diversity. Second,

controlled mutation tends to increase the number of

active bits in a mutation mask

4

, thereby increasing

the mutation rate.

4.2 A ML APPROACH

The presented approach involves three key points.

First, we formalize the goal of control in terms of what

should be avoided (disruptiveness or loss of diversity);

previous approaches of control typically attempt to de-

termine what should be done (Spears 1991, Scha�er

& Morishima 1987, Schwefel 1981). We claim that a

4

The �rst mutation examples have very few active bits.

By rejecting the schemas containing some of them, muta-

tion masks are gradually biased toward regions with more

and more active bits.

7



negative control (made of inhibitions), is safer than a

positive one (made of recommendations). On the one

hand, suitable recommendations are outnumbered by

suitable inhibitions, especially in the end of evolution.

On the other hand, we know part of the suitable in-

hibitions (e.g., the past errors of evolution) while we

know nothing like a priori suitable recommendations

for non-trivial problems.

Second, we express control within the formalism of

logical rules. Previous approaches aim at control-

ling evolution either at a global level (e.g., operator

rates: Grefenstette 1986, Grefenstette 1995, Lee &

Takagi 1993) or at the level of each individual (e.g.,

suited type or mask of operators: Spears 1991, Schaf-

fer & Morishima 1987, Schwefel 1981). Rules o�er a

tractable and compact way to handle schemas of op-

erators: rule-based control applies to the whole popu-

lation, and can still take into account the topology of

the search space (e.g. don't mutate a given bit; mutate

simultaneously a set of bits,: : :).

Finally, we propose a procedure to extract the rules

underlying control: inductive learning from examples

5

.

A further perspective of research deals with setting

the rules through evolution itself: according to the

fans of Nature Only, evolution can handle all choices

pertaining to the representation space, and does so

in an optimal way. Experimentations will tell whether

control rules are better adjusted by evolution, or faster

extracted by an ad hoc external algorithm.

5 CONCLUSION AND

PERSPECTIVES

This work is oriented toward building and using an

explicit memory of evolution, expressed as rules. The

rule formalism allows for handling knowledge that is

both general (relevant to the whole population) and

speci�c (relative to particular genes or sets of genes).

Rules are used to express signi�cant trends regarding

disruptive and inactive operations; these are periodi-

cally built by induction from experiments conducted

5

This could be viewed in the line of cultural algorithms,

that similarly build and use \beliefs" to guide evolution

(Reynolds 1994, Cavaretta 1994). However, a signi�cant

di�erence lies in the update mechanism: in cultural algo-

rithms, new beliefs are built on the basis of experiments

biased according to old beliefs. The risk is then to grad-

ually validate some erroneous generalizations; simply put,

this mechanism is apt to build prejudices as well as beliefs.

In contrast, in our approach, the \memory" of control is

erased, in the sense that control rules are learnt anew ev-

ery M generations. This gives opportunities to get rid of

old prejudices (erroneous rules). Other prejudices may be

introduced, but long lasting prejudices are less likely to

distort the control and the course of evolution.

on the current population. These rules enable to a

priori estimate the e�ects of further operations. Two

modes of control are then possible: Classical control

aims at preventing disruptiveness, by rejecting disrup-

tive operations. Modern control aims at increasing

population diversity by rejecting inactive operations.

A hybrid evolution scenario, interleaving darwinian

periods and periods undergoing a classical or modern

control, is described. The control strategy is inspired

from the analogy between games and evolution. Evo-

lution is darwinian during the beginning phase, then

it undergoes classical control during the middle of the

game, and modern control during the end of the game.

Indicators of transition are suggested.

This approach addresses the control of both crossovers

and mutations. Quite unexpectedly, experiments

demonstrate the control of mutations to be much more

e�cient than that of crossovers, in spite of the fact that

the crossover rate is much higher than the mutation

rate. A tentative explanation is given (4.1).

These results suggest several avenues for further re-

search.

First, the control strategy could be de�ned in a more

exible way. For instance, the description of an in-

dividual could include the mode of control, classical,

modern or darwinian, to be applied to this individual.

Evolution would thereby optimize the control strategy

for free, a la Spears (1991).

Further experimentations will also be conducted to un-

derstand the potentials of controlled mutation, and

see to what extent it constitutes an alternative to

crossover (Fogel & Stayton 1994, Jones 1995).

Third, this approach will be extended to handle real-

valued search spaces. The feasibility of this exten-

sion is straightforward: mutation and crossover can

be given a mask representation with masks in [�1; 1]

N

.

Many learners are able to extract rules (hyper rectan-

gles) from examples in IR

N

. But unexpected problems

will likely emerge from experimentations...
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