Adaptive estimation of the transition density of a Markov chain
Résumé
In this paper a new estimator for the transition density $\pi$ of an homogeneous Markov chain is considered. We introduce an original contrast derived from regression framework and we use a model selection method to estimate $\pi$ under mild conditions. The resulting estimate is adaptive with an optimal rate of convergence over a large range of anisotropic Besov spaces $B_{2,\infty}^{(\alpha_1,\alpha_2)}$. Some simulations are also presented.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...