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Abstract

In this paper a new estimator for the transition density π of an homogeneous Markov
chain is considered. We introduce an original contrast derived from regression frame-
work and we use a model selection method to estimate π under mild conditions.
The resulting estimate is adaptive with an optimal rate of convergence over a large

range of anisotropic Besov spaces B
(α1,α2)
2,∞ . Some applications and simulations are

also presented.

Résumé

Dans cet article, on considère un nouvel estimateur de la densité de transition π
d’une châine de Markov homogène. Pour cela, on introduit un contraste original issu
de la théorie de la régression et on utilise une méthode de sélection de modèles pour
estimer π sous des conditions peu restrictives. L’estimateur obtenu est adaptatif et
la vitesse de convergence est optimale pour une importante classe d’espaces de Besov

anisotropes B
(α1,α2)
2,∞ . On présente également des applications et des simulations.

Key words: adaptive estimation, transition density, Markov chain, model
selection, penalized contrast.
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1 Introduction

We consider (Xi) a homogeneous Markov chain. The purpose of this paper
is to estimate the transition density of such a chain. This quantity allows
to comprehend the form of dependence between variables and is defined by
π(x, y)dy = P (Xi+1 ∈ dy|Xi = x). It enables also to compute other quan-
tities, like E[F (Xi+1)|Xi = x] for example. As many authors, we choose for
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this a nonparametric approach. Roussas [1] first studies an estimator of the
transition density of a Markov chain. He proves the consistency and the asymp-
totic normality of a kernel estimator for chains satisfying a strong condition
known as Doeblin’s hypothesis. In Bosq [2], an estimator by projection is
studied in a mixing framework and the consistence is also proved. Basu and
Sahoo [3] establish a Berry-Essen inequality for a kernel estimator under an
assumption introduced by Rosenblatt, weaker than the Doeblin’s hypothesis.
Athreya and Atuncar [4] improve the result of Roussas since they only need
the Harris recurrence of the Markov chain. Other authors are interested in
the estimation of the transition density in the non-stationary case: Doukhan
and Ghindès [5] bound the integrated risk for any initial distribution. In [6],
recursive estimators for a non-stationary Markov chain are described. More
recently, Clemençon [7] computes the lower bound of the minimax Lp risk and
describes a quotient estimator using wavelets. Lacour [8] finds an estimator by
projection with model selection that reaches the optimal rate of convergence.

All these authors have estimated π by observing that π = g/f where g is the
density of (Xi, Xi+1) and f the stationary density. If ĝ and f̂ are estimators
of g and f , then an estimator of π can be obtained by writing π̂ = ĝ/f̂ . But
this method has the drawback that the resulting rate of convergence depends
on the regularity of f . And the stationary density f can be less regular than
the transition density.

The aim here is to find an estimator π̃ of π from the observations X1, . . . , Xn+1

such that the order of the L2 risk depends only on the regularity of π and is
optimal.

Clémençon [7] introduces an estimation procedure based on an analogy with
the regression framework using the thresholding of wavelets coefficients for
regular Markov chains. We propose in this paper an other method based on
regression, which improves the rate and has the advantage to be really com-
putable. Indeed, this method allows to reach the optimal rate of convergence,
without the logarithmic loss obtained by Clémençon [7] and can be applied to
β-mixing Markov chains (the notion of ”regular” Markov chains in [7] is equiv-
alent to Φ-mixing and is then a stronger assumption). We use model selection
via penalization as described in [9] with a new contrast inspired by the classi-
cal regression contrast. To deal with the dependence we use auxiliary variables
X∗

i as in [10]. But contrary to most cases in such estimation procedure, our
penalty does not contain any mixing term and is entirely computable.

In addition, we consider transition densities belonging to anisotropic Besov
spaces, i.e. with different regularities with respect to the two directions. Our
projection spaces (piecewise polynomials, trigonometric polynomials or wave-
lets) have different dimensions in the two directions and the procedure selects
automatically both well fitted dimensions. A lower bound for the rate of con-
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vergence on anisotropic Besov balls is proved, which shows that our estimation
procedure is optimal in a minimax sense.

The paper is organized as follows. First, we present the assumptions on the
Markov chain and on the collections of models. We also give examples of chains
and models. Section 3 is devoted to estimation procedure and the link with
classical regression. The bound on the empirical risk is established in Section
4 and the L2 control is studied in Section 5. We compute both upper bound
and lower bound for the mean integrated squared error. In Section 6, some
simulation results are given. The proofs are gathered in the last section.

2 Assumptions

2.1 Assumptions on the Markov chain

We consider an irreducible Markov chain (Xn) taking its values in the real
line R. We suppose that (Xn) is positive recurrent, i.e. it admits a stationary
probability measure µ (for more details, we refer to [11]). We assume that
the distribution µ has a density f with respect to the Lebesgue measure and
that the transition kernel P (x,A) = P (Xi+1 ∈ A|Xi = x) has also a density,
denoted by π. Since the number of observations is finite, π is estimated on a
compact set A = A1×A2 only. More precisely, the Markov process is supposed
to satisfy the following assumptions:

A1. (Xn) is irreducible and positive recurrent.
A2. The distribution ofX0 is equal to µ , thus the chain is (strictly) stationary.
A3. The transition density π is bounded on A, i.e.

‖π‖∞ := sup(x,y)∈A |π(x, y)| <∞
A4. The stationary density f verifies ‖f‖∞ := supx∈A1

|f(x)| < ∞ and there
exists a positive real f0 such that, for all x in A1, f(x) ≥ f0.

A5. The chain is geometrically β-mixing (βq ≤ e−γq), or arithmetically β-
mixing (βq ≤ q−γ).

Since (Xi) is a stationary Markov chain, the β-mixing is very explicit, the
mixing coefficients can be written:

βq =
∫

‖P q(x, .) − µ‖TV f(x)dx (1)

where ‖.‖TV is the total variation norm (see [12]).

Notice that we distinguish the sets A1 and A2 in this work because the two
directions x and y in π(x, y) do not play the same role, but in practice A1 and
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A2 will be equal and identical or close to the value domain of the chain.

2.2 Examples of chains

A lot of processes verify the previous assumptions, as (classical or more gen-
eral) autoregressive processes, or diffusions. Here we give a nonexhaustive list
of such chains.

2.2.1 Diffusion processes

We consider the process (Xi∆)1≤i≤n where ∆ > 0 is the observation step and
(Xt)t≥0 is defined by

dXt = b(Xt)dt+ σ(Xt)dWt

where W is the standard Brownian motion, b is a locally bounded Borel func-
tion and σ an uniformly continuous function. We suppose that the drift func-
tion b and the diffusion coefficient σ satisfy the following conditions, given in
[13](Proposition 1):

(1) there exists λ−, λ+ such that ∀x 6= 0, 0 < λ− < σ2(x) < λ+,
(2) there exists M0 ≥ 0, α > −1 and r > 0 such that

∀|x| ≥M0, xb(x) ≤ −r|x|α+1.

Then, ifX0 follows the stationary distribution, the discretized process (Xi∆)1≤i≤n

satisfies Assumptions A1–A5. Note that the mixing is geometrical as soon as
α ≥ 0. The continuity of the transition density ensures that Assumption A3
holds. Moreover, we can write

f(x) =
1

Mσ2(x)
exp

[

2
∫ x

0

b(u)

σ2(u)
du

]

with M such that
∫

f = 1. Consequently Assumption A4 is verified with

‖f‖∞ ≤ 1
Mλ−

exp
[

2
λ−

supx∈A1

∫ x
0 b(u)du

]

and f0 ≥ 1
Mλ+

exp
[

2
λ+

infx∈A1

∫ x
0 b(u)du

]

.

2.2.2 Nonlinear AR(1) processes

Let us consider the following process

Xn = ϕ(Xn−1) + εXn−1,n

where εx,n has a positive density lx with respect to the Lebesgue measure,
which does not depend on n. We suppose that the following conditions are
verified:
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(1) There exist M > 0 and ρ < 1 such that, for all |x| > M , |ϕ(x)| < ρ|x|
and sup|x|≤M |ϕ(x)| <∞.

(2) There exist l0 > 0, l1 > 0 such that ∀x, y l0 ≤ lx(y) ≤ l1.

Then Mokkadem [14] proves that the chain is Harris recurrent and geometri-
cally ergodic. It implies that Assumptions A1 and A5 are satisfied. Moreover
π(x, y) = lx(y − ϕ(x)) and f(y) =

∫

f(x)π(x, y)dx and then Assumptions
A3-A4 hold with f0 ≥ l0 and ‖f‖∞ ≤ ‖π‖∞ ≤ l1.

2.2.3 ARX(1,1) models

The nonlinear process ARX(1,1) is defined by

Xn = F (Xn−1, Zn) + ξn

where F is bounded and (ξn), (Zn) are independent sequences of i.i.d. random
variables with E|ξn| <∞. We suppose that the distribution of Zn has a positive
density l with respect to the Lebesgue mesure. Assume that there exist ρ < 1,
a locally bounded and mesurable function h : R 7→ R

+ such that Eh(Zn) <∞
and positive constants M, c such that

∀|(u, v)| > M |F (u, v)| < ρ|u| + h(v) − c and sup
|x|≤M

|F (x)| <∞.

Then Doukhan [12] proves (p.102) that (Xn) is a geometrically β−mixing
process. We can write

π(x, y) =
∫

l(z)fξ(y − F (x, z))dz

where fξ is the density of ξn. So, if we assume furthermore that there exist
a0, a1 > 0 such that a0 ≤ fξ ≤ a1, then Assumptions A3-A4 are verified with
f0 ≥ a0 and ‖f‖∞ ≤ ‖π‖∞ ≤ a1.

2.2.4 ARCH processes

The model is

Xn+1 = F (Xn) +G(Xn)εn+1

where F and G are continuous functions and for all x, G(x) 6= 0. We suppose
that the distribution of εn has a positive density l with respect to the Lebesgue
measure and that there exists s ≥ 1 such that E|εn|s < ∞. The chain (Xn)
satisfies Assumptions A1 and A5 if (see [15]):

lim sup
|x|→∞

|F (x)| + |G(x)|(E|εn|s)1/s

|x| < 1. (2)
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In addition, we assume that ∀x l0 ≤ l(x) ≤ l1. Then Assumption A3 is
verified with ‖π‖∞ ≤ l1/ infx∈A1

G(x). And Assumption A4 holds with f0 ≥
l0
∫

fG−1 and ‖f‖∞ ≤ l1
∫

fG−1.

2.3 Assumptions on the models

In order to estimate π, we need to introduce a collection {Sm, m ∈ Mn} of
spaces, that we call models. For each m = (m1, m2), Sm is a space of functions
with support in A defined from two spaces: Fm1

and Hm2
. Fm1

is a subspace
of (L2 ∩L∞)(R) spanned by an orthonormal basis (ϕm

j )j∈Jm with |Jm| = Dm1

such that, for all j, the support of ϕm
j is included in A1. In the same way Hm2

is a subspace of (L2 ∩ L∞)(R) spanned by an orthonormal basis (ψm
k )k∈Km

with |Km| = Dm2
such that, for all k, the support of ψm

k is included in A2.
Here j and k are not necessarily integers, it can be couples of integers as in
the case of a piecewise polynomial space. Then, we define

Sm = Fm1
⊗Hm2

= {t, t(x, y) =
∑

j∈Jm

∑

k∈Km

am
j,kϕ

m
j (x)ψm

k (y)}

The assumptions on the models are the following:

M1. For all m2, Dm2
≤ n1/3 and Dn := maxm∈Mn Dm1

≤ n1/3

M2. There exist positive reals φ1, φ2 such that, for all u in Fm1
, ‖u‖2

∞ ≤
φ1Dm1

∫

u2, and for all v in Hm2
, supx∈A2

|v(x)|2 ≤ φ2Dm2

∫

v2. By letting
φ0 =

√
φ1φ2, that leads to

∀t ∈ Sm ‖t‖∞ ≤ φ0

√

Dm1
Dm2

‖t‖ (3)

where ‖t‖2 =
∫

R2 t2(x, y)dxdy.
M3. Dm1

≤ Dm′

1
⇒ Fm1

⊂ Fm′

1
and Dm2

≤ Dm′

2
⇒ Hm2

⊂ Hm′

2

The first assumption guarantees that dimSm = Dm1
Dm2

≤ n2/3 ≤ n where n
is the number of observations. The condition M2 implies a useful link between
the L2 norm and the infinite norm. The third assumption ensures that, for
m and m′ in Mn, Sm + Sm′ is included in a model (since Sm + Sm′ ⊂ Sm′′

with Dm′′

1
= max(Dm1

, Dm′

1
) and Dm′′

2
= max(Dm2

, Dm′

2
)). We denote by S

the space with maximal dimension among the (Sm)m∈Mn . Thus for all m in
Mn, Sm ⊂ S.
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2.4 Examples of models

We show here that Assumptions M1–M3 are not too restrictive. Indeed, they
are verified for the spaces Fm1

(and Hm2
) spanned by the following bases (see

[9]):

• Trigonometric basis: for A = [0, 1], < ϕ0, . . . , ϕm1−1 > with ϕ0 = 1[0,1],

ϕ2j(x) =
√

2 cos(2πjx) 1[0,1](x), ϕ2j−1(x) =
√

2 sin(2πjx)1[0,1](x) for j ≥ 1.
For this model Dm1

= m1 and φ1 = 2 hold.
• Histogram basis: forA = [0, 1],< ϕ1, . . . , ϕ2m1 >with ϕj = 2m1/21[(j−1)/2m1 ,j/2m1 [

for j = 1, . . . , 2m1 . Here Dm1
= 2m1 , φ1 = 1.

• Regular piecewise polynomial basis: for A = [0, 1], polynomials of degree
0, . . . , r (where r is fixed) on each interval [(l − 1)/2D, l/2D[, l = 1, . . . , 2D.
In this case, m1 = (D, r), Jm = {j = (l, d), 1 ≤ l ≤ 2D, 0 ≤ d ≤ r},
Dm1

= (r + 1)2D. We can put φ1 =
√
r + 1.

• Regular wavelet basis: < Ψlk, l = −1, . . . , m1, k ∈ Λ(l) > where Ψ−1,k points
out the translates of the father wavelet and Ψlk(x) = 2l/2Ψ(2lx− k) where
Ψ is the mother wavelet. We assume that the support of the wavelets is
included in A1 and that Ψ−1 belongs to the Sobolev space W r

2 .

3 Estimation procedure

3.1 Definition of the contrast

To estimate the function π, we define the contrast

γn(t) =
1

n

n
∑

i=1

[
∫

R

t2(Xi, y)dy − 2t(Xi, Xi+1)]. (4)

We choose this contrast because

Eγn(t) = ‖t− π‖2
f − ‖π‖2

f

where

‖t‖2
f =

∫

R2

t2(x, y)f(x)dxdy.

Therefore γn(t) is the empirical counterpart of the ‖.‖f -distance between t and
f and the minimization of this contrast comes down to minimize ‖t − π‖f .
This contrast is new but is actually connected with the one used in regression
problems, as we will see in the next subsection.

We want to estimate π by minimizing this contrast on Sm. Let t(x, y) =

7



∑

j∈Jm

∑

k∈Km
aj,kϕ

m
j (x)ψm

k (y) a function in Sm. Then, if Am denotes the ma-
trix (aj,k)j∈Jm,k∈Km,

∀j0∀k0
∂γn(t)

∂aj0,k0

= 0 ⇔ GmAm = Zm,

where



























Gm =

(

1

n

n
∑

i=1

ϕm
j (Xi)ϕ

m
l (Xi)

)

j,l∈Jm

Zm =

(

1

n

n
∑

i=1

ϕm
j (Xi)ψ

m
k (Xi+1)

)

j∈Jm,k∈Km

Indeed,

∂γn(t)

∂aj0,k0

= 0 ⇔
∑

j∈Jm

aj,k0

1

n

n
∑

i=1

ϕm
j (Xi)ϕ

m
j0

(Xi) =
1

n

n
∑

i=1

ϕm
j0

(Xi)ψ
m
k0

(Xi+1). (5)

We can not define a unique minimizer of the contrast γn(t), since Gm is not
necessarily invertible. For example, Gm is not invertible if there exists j0 in
Jm such that there is no observation in the support of ϕj0 (Gm has a null
column). This phenomenon happens when localized bases (as histogram bases
or piecewise polynomial bases) are used. However, the following proposition
will enable us to define an estimator:

Proposition 1

∀j0∀k0
∂γn(t)

∂aj0,k0

= 0 ⇔ ∀y (t(Xi, y))1≤i≤n = PW





(

∑

k

ψm
k (Xi+1)ψ

m
k (y)

)

1≤i≤n





where PW denotes the orthogonal projection on W = {(t(Xi, y))1≤i≤n, t ∈ Sm}.

Thus the minimization of γn(t) leads to a unique vector (π̂m(Xi, y))1≤i≤n de-
fined as the projection of (

∑

k ψk(Xi+1)ψk(y))1≤i≤n on W . The associated func-
tion π̂m(., .) is not defined uniquely but we can choose a function π̂m in Sm

whose values at (Xi, y) are fixed according to Proposition 1. For the sake of
simplicity, we denote

π̂m = arg min
t∈Sm

γn(t).

This underlying function is more a theoretical tool and the estimator is actu-
ally the vector (π̂m(Xi, y))1≤i≤n. This remark leads to consider the risk defined
with the empirical norm

‖t‖n =

(

1

n

n
∑

i=1

∫

R

t2(Xi, y)dy

)1/2

. (6)
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This norm is the natural distance in this problem and we can notice that if t
is deterministic with support included in A1 × R

f0‖t‖2 ≤ E‖t‖2
n = ‖t‖2

f ≤ ‖f‖∞‖t‖2

and then the mean of this empirical norm is equivalent to the L2 norm ‖.‖.

3.2 Link with classical regression

Let us fix k in Km and let

Yi,k = ψm
k (Xi+1) for i ∈ {1, . . . , n}

tk(x) =
∫

t(x, y)ψm
k (y)dy for all t in L2(R2).

Actually, Yi,k and tk depend on m but we do not mention this for the sake of
simplicity. For the same reason, we denote in this subsection ψm

k by ψk and
ϕm

j by ϕj. Then, if t belongs to Sm,

t(x, y)=
∑

j∈Jm

∑

k∈Km

(∫

t(x′, y′)ϕj(x
′)ψk(y

′)dx′dy′
)

ϕj(x)ψk(y)

=
∑

k∈Km

∑

j∈Jm

(∫

tk(x
′)ϕj(x

′)dx′
)

ϕj(x)ψk(y) =
∑

k∈Km

tk(x)ψk(y)

and then, by replacing this expression of t in γn(t), we obtain

γn(t) =
1

n

n
∑

i=1

[
∫

∑

k,k′

tk(Xi)tk′(Xi)ψk(y)ψk′(y)dy − 2
∑

k

tk(Xi)ψk(Xi+1)]

=
1

n

n
∑

i=1

∑

k∈Km

[t2k(Xi) − 2tk(Xi)Yi,k] =
1

n

n
∑

i=1

∑

k∈Km

[tk(Xi) − Yi,k]
2 − Y 2

i,k.

Consequently

min
t∈Sm

γn(t) =
∑

k∈Km

min
tk∈Fm1

1

n

n
∑

i=1

[tk(Xi) − Yi,k]
2 − Y 2

i,k.

We recognize, for all k, the least squares contrast, which is used in regression
problems. Here the regression function is πk =

∫

π(., y)ψk(y)dy which verifies

Yi,k = πk(Xi) + εi,k (7)

where
εi,k = ψk(Xi+1) − E[ψk(Xi+1)|Xi]. (8)
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The estimator π̂m can be written as
∑

k∈Km
π̂k(x)ψk(y) where π̂k is the classical

least squares estimator for the regression model (7) (as previously, only the
vector (π̂k(Xi))1≤i≤n is uniquely defined).

This regression model is used in Clémençon [7] to estimate the transition den-
sity. In the same manner, we could use here the contrast γ(k)

n (t) = 1
n

∑n
i=1[ψk(Xi+1)−

t(Xi)]
2 to take advantage of analogy with regression. This method allows to

have a good estimation of the projection of π on some Sm by estimating first
each πk, but does not provide an adaptive method. Model selection requires a
more global contrast, as described in (4).

3.3 Definition of the estimator

We have then an estimator of π for all Sm. Let now

m̂ = arg min
m∈Mn

{γn(π̂m) + pen(m)}

where pen is a penalty function to be specified later. Then we can define
π̃ = π̂m̂ and compute the empirical mean integrated squared error E‖π − π̃‖2

n

where ‖.‖n is the empirical norm defined in (6).

4 Calculation of the risk

For a function h and a subspace S, let

d(h, S) = inf
g∈S

‖h− g‖ = inf
g∈S

(∫∫

|h(x, y) − g(x, y)|2dxdy
)1/2

.

With an inequality of Talagrand [16], we can prove the following result.

Theorem 2 We consider a Markov chain satisfying Assumptions A1–A5 (with
γ > 14 in the case of an arithmetical mixing). We consider π̃ the estimator of
the transition density π described in Section 3 with models verifying Assump-
tions M1–M3 and the following penalty:

pen(m) = K0‖π‖∞
Dm1

Dm2

n
(9)

where K0 is a numerical constant. Then

E‖π1A − π̃‖2
n ≤ C inf

m∈Mn

{d2(π1A, Sm) + pen(m)} +
C ′

n

10



where C = max(5‖f‖∞, 6) and C ′ is a constant depending on φ1, φ2, ‖π‖∞, f0,
‖f‖∞, γ.

The constant K0 in the penalty is purely numerical (we can choose K0 = 45).
We observe that the term ‖π‖∞ appears in the penalty although it is unknown.
Nevertheless it can be replaced by any bound of ‖π‖∞. Moreover, it is possible
to use ‖π̂‖∞ where π̂ is some estimator of π. This method of random penalty
(specifically with infinite norm) is successfully used in [17] and [18] for example,
and can be applied here even if it means considering π regular enough. This
is proved in appendix.

It is relevant to notice that the penalty term does not contain any mixing term
and is then entirely computable. It is in fact related to martingale properties
of the underlying empirical processes. The constant K0 is a fixed universal
numerical constant; for practical purposes, it is adjusted by simulations.

We are now interested in the rate of convergence of the risk. We consider that
π restricted to A belongs to the anisotropic Besov space on A with regularity
α = (α1, α2). Note that if π belongs to Bα

2,∞(R2), then π restricted to A
belongs to Bα

2,∞(A). Let us recall the definition of Bα

2,∞(A). Let e1 and e2 be
the canonical basis vectors in R

2 and for i = 1, 2, Ar
h,i = {x ∈ R

2; x, x +
hei, . . . , x+ rhei ∈ A}. Next, for x in Ar

h,i, let

∆r
h,ig(x) =

r
∑

k=0

(−1)r−k

(

r

k

)

g(x+ khei)

the rth difference operator with step h. For t > 0, the directional moduli of
smoothness are given by

ωri,i(g, t) = sup
|h|≤t

(

∫

A
ri
h,i

|∆ri
h,ig(x)|2dx

)1/2

.

We say that g is in the Besov space Bα

2,∞(A) if

sup
t>0

2
∑

i=1

t−αiωri,i(g, t) <∞

for ri integers larger than αi. The transition density π can thus have differ-
ent smoothness properties with respect to different directions. The procedure
described here allows an adaptation of the approximation space to each direc-
tional regularity. More precisely, if α2 > α1 for example, the estimator chooses
a space of dimension Dm2

= Dα1/α2

m1
< Dm1

for the second direction, where π
is more regular. We can thus write the following corollary.

Corollary 3 We suppose that π restricted to A belongs to the anisotropic
Besov space Bα

2,∞(A) with regularity α = (α1, α2) such that α1−2α2+2α1α2 >

11



0 and α2−2α1+2α1α2 > 0. We consider the spaces described in Subsection 2.4
(with the regularity r of the polynomials and the wavelets larger than αi − 1).
Then, under the assumptions of Theorem 2,

E‖π1A − π̃‖2
n = O(n− 2ᾱ

2ᾱ+2 ).

where ᾱ is the harmonic mean of α1 and α2.

The harmonic mean of α1 and α2 is the real ᾱ such that 2/ᾱ = 1/α1 + 1/α2.
Note that the condition α1 − 2α2 + 2α1α2 > 0 is ensured as soon as α1 ≥ 1
and the condition α2 − 2α1 + 2α1α2 > 0 as soon as α2 ≥ 1.

Thus we obtain the rate of convergence n− 2ᾱ
2ᾱ+2 , which is optimal in the mini-

max sense (see Section 5.3 for the lower bound).

5 L2 control

5.1 Estimation procedure

Although the empirical norm is the more natural in this problem, we are
interested in a L2 control of the risk. For this, the estimation procedure must
be modified. We truncate the previous estimator in the following way :

π̃∗ =







π̃ if ‖π̃‖ ≤ kn

0 else
(10)

with kn = n2/3.

5.2 Calculation of the L2 risk

We obtain in this framework a result similar to Theorem 2.

Theorem 4 We consider a Markov chain satisfying Assumptions A1–A5 (with
γ > 20 in the case of an arithmetical mixing). We consider π̃∗ the estimator
of the transition density π described in Section 5.1. Then

E‖π̃∗ − π1A‖2 ≤ C inf
m∈Mn

{d2(π1A, Sm) + pen(m)} +
C ′

n
.

where C = max(36f−1
0 ‖f‖∞ + 2, 36f−1

0 ) and C ′ is a constant depending on
φ1, φ2, ‖π‖∞, ‖π‖, f0, ‖f‖∞, γ.

12



If π is regular, we can state the following corollary:

Corollary 5 We suppose that the restriction of π to A belongs to the aniso-
tropic Besov space Bα

2,∞(A) with regularity α = (α1, α2) such that α1 − 2α2 +
2α1α2 > 0 and α2 − 2α1 + 2α1α2 > 0. We consider the spaces described in
Subsection 2.4 (with the regularity r of the polynomials and the wavelets larger
than αi − 1). Then, under the assumptions of Theorem 4,

E‖π1A − π̃∗‖2 = O(n− 2ᾱ
2ᾱ+2 ).

where ᾱ is the harmonic mean of α1 and α2.

The same rate of convergence is then achieved with the L2 norm instead of
the empirical norm. And the procedure allows to adapt automatically the
two dimensions of the projection spaces to the regularities α1 and α2 of the

transition density π. If α1 = 1 we recognize the rate n
− α2

3α2+1 established by
Birgé [19] with metrical arguments. The optimality is proved in the following
subsection.

If α1 = α2 = α (”classical” Besov space), then ᾱ = α and our result is thus
an improvement of the one of Clémençon [7], whose procedure achieves only

the rate (log(n)/n)
2α

2α+2 and allows to use only wavelets. We can observe that
in this case, the condition α1 − 2α2 + 2α1α2 > 0 is equivalent to α > 1/2 and
so is verified if the function π is regular enough.
Actually, in the case α1 = α2, an estimation with isotropic spaces (Dm1

=
Dm2

) is preferable. Indeed, in this framework, the models are nested and so
we can consider spaces with larger dimension (D2

m ≤ n instead of D2
m ≤ n2/3).

Then Corollary 3 is valid whatever α > 0. Moreover, for the arithmetic mixing,
assumption γ > 6 is sufficient.

5.3 Lower bound

We denote by ‖.‖A the norm in L2(A), i.e. ‖g‖A = (
∫

A |g|2)1/2
. We set

B = {π transition density on R of a positive recurrent

Markov chain such that ‖π‖Bα

2,∞(A) ≤ L}

and Eπ the expectation corresponding to the distribution of X1, . . . , Xn if the
true transition density of the Markov chain is π and the initial distribution is
the stationary distribution.

13



Theorem 6 There exists a positive constant C such that, if n is large enough,

inf
π̂n

sup
π∈B

Eπ‖π̂n − π‖2
A ≥ Cn− 2ᾱ

2ᾱ+2

where the infimum is taken over all estimators π̂n of π based on the observa-
tions X1, . . . , Xn+1.

So the lower bound in [7] is generalized for the case α1 6= α2. It shows that
our procedure reaches the optimal minimax rate, whatever the regularity of
π, without needing to know α.

6 Simulations

To evaluate the performance of our method, we simulate a Markov chain with
a known transition density and then we estimate this density and compare
the two functions for different values of n. The estimation procedure is easy,
we can decompose it in some steps:

• find the coefficients matrix Am for each m = (m1, m2)
• compute γn(π̂m) = Tr(tAmGmAm − 2tZmAm)
• find m̂ such that γn(π̂m) + pen(m) is minimum
• compute π̂m̂

For the first step, we use two different kinds of bases : the histogram bases
and the trigonometric bases, as described in subsection 2.4. We renormalize
these bases so that they are defined on the estimation domain A instead of

[0, 1]2. For the third step, we choose pen(m) = 0.5
Dm1

Dm2

n
.

We consider three Markov chains:
• An autoregressive process defined by Xn+1 = aXn + b+ εn+1, where the εn

are i.i.d. centered Gaussian random variables with variance σ2. The stationary
distribution of this process is a Gaussian with mean b/(1−a) and with variance
σ2/(1 − a2). The transition density is π(x, y) = ϕ(y − ax − b) where ϕ(z) =
1/(σ

√
2π). exp(−z2/2σ2) is the density of a standard Gaussian. Here we choose

a = 0.5, b = 3, σ = 1 and we note this process AR(1). It is estimated on [4, 8]2.
• A discrete radial Ornstein-Uhlenbeck process, i.e. the Euclidean norm of a
vector (ξ1, ξ2, ξ3) whose components are i.i.d. processes satisfying, for j =
1, 2, 3, ξj

n+1 = aξj
n + βεj

n where εj
n are i.i.d. standard Gaussian. This process is

studied in detail in [20]. Its transition density is

π(x, y) = 1y>0 exp(−y
2 + a2x2

2β2
)I1/2(

axy

β2
)
y

β2

√

y

ax
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where I1/2 is the Bessel function with index 1/2. The stationary density of

this chain is f(x) = 1x>0 exp{−x2/2ρ2}2x2/(ρ3
√

2π) with ρ2 = β2/(1 − a2).
We choose a = 0.5, β = 3 and we denote this process by

√
CIR since it is the

square root of a Cox-Ingersoll-Ross process. The estimation domain is [2, 10]2.
• An ARCH process defined by Xn+1 = sin(Xn)+(cos(Xn)+3)εn+1 where the
εn+1 are i.i.d. standard Gaussian. We verify that the condition (2) is satisfied.
Here the transition density is

π(x, y) = ϕ

(

y − sin(x)

cos(x) + 3

)

1

cos(x) + 3

and we estimate this chain on [−6, 6]2.

Z

X
Y

Fig. 1. Estimator (light surface) and true fonction (dark surface) for a
√

CIR process
estimated with a histogram basis, n = 1000.

We can illustrate the results by some figures. Figure 1 shows the surface z =
π(x, y) and the estimated surface z = π̃(x, y). We use a histogram basis and we
see that the procedure chooses different dimensions on the abscissa and on the
ordinate since the estimator is constant on rectangles instead of squares. Figure
2 presents sections of this kind of surfaces for the AR(1) process estimated with
trigonometric bases. We can see the curves z = π(4.6, y) versus z = π̃(4.6, y)
and the curves z = π(x, 5) versus z = π̃(x, 5). The second section shows that
it may exist some edge effects due to the mixed control of the two directions.

For more precise results, empirical risk and L2 risk are given respectively in
Table 1 and Table 2.
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Fig. 2. Sections for AR(1) process estimated with a trigonometric basis, n = 1000,
dark line: true function, light line: estimator.

H
H

H
H

HH
law

n
50 100 250 500 1000 basis

AR(1) 0.067 0.055 0.043 0.038 0.033 H

0.096 0.081 0.063 0.054 0.045 T
√

CIR 0.026 0.023 0.019 0.016 0.014 H

0.019 0.015 0.009 0.007 0.006 T

ARCH 0.031 0.027 0.016 0.015 0.014 H

0.020 0.012 0.008 0.007 0.007 T

Table 1
Empirical risk E‖π−π̃‖2

n for simulated data with pen(m) = 0.5Dm1
Dm2

/n, averaged
over N = 200 samples. H: histogram basis, T: trigonometric basis.

H
H

H
H

HH
law

n
50 100 250 500 1000 basis

AR(1) 0.242 0.189 0.132 0.109 0.085 H

0.438 0.357 0.253 0.213 0.180 T
√

CIR 0.152 0.130 0.094 0.066 0.054 H

0.152 0.123 0.072 0.052 0.046 T

ARCH 0.367 0.303 0.168 0.156 0.144 H

0.249 0.137 0.096 0.092 0.090 T

Table 2
L2 risk E‖π− π̃∗‖2 for simulated data with pen(m) = 0.5Dm1

Dm2
/n, averaged over

N = 200 samples. H: histogram basis, T: trigonometric basis.

We observe that the results are better when we consider the empirical norm.
It was expectable, given that this norm is adapted to the studied problem.
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H
H

H
H

HH
law

n
50 100 250 500 1000 basis

AR(1) 0.052 0.038 0.026 0.020 0.015 H

0.081 0.069 0.046 0.037 0.031 T
√

CIR 0.016 0.014 0.010 0.006 0.004 H

0.018 0.012 0.008 0.006 0.004 T

Table 3
L2(f(x)dxdy) risk E‖π − π̃∗‖2

f for simulated data with pen(m) = 0.5Dm1
Dm2

/n,
averaged over N = 200 samples. H: histogram basis, T: trigonometric basis.

Actually the better norm to evaluate the distance between π and its estimator
is the norm ‖.‖f . Table 3 shows that the errors in this case are very satisfactory.

So the results are roughly good but we can not pretend that a basis among
the others gives better results. We can then imagine a mixed strategy, i.e. a
procedure which uses several kinds of bases and which can choose the best
basis. These techniques are successfully used in a regression framework by
Comte and Rozenholc [21], [22].

7 Proofs

7.1 Proof of Proposition 1

Equality (5) yields, by multiplying by ψm
k0

(y),

∑

j∈Jm

aj,k0

n
∑

i=1

ϕm
j (Xi)ψ

m
k0

(y)ϕm
j0

(Xi) =
n
∑

i=1

ϕm
j0

(Xi)ψ
m
k0

(Xi+1)ψ
m
k0

(y).

Then, we sum over k0 in Km:

n
∑

i=1

t(Xi, y)ϕ
m
j0(Xi) =

n
∑

i=1

∑

k0∈Km

ψm
k0

(Xi+1)ψ
m
k0

(y)ϕm
j0(Xi).

If we multiply this equality by a′j0,kψ
m
k (y) and if we sum over k ∈ Km and

j0 ∈ Jm, we obtain
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n
∑

i=1

[t(Xi, y)−
∑

k0∈Km

ψm
k0

(Xi+1)ψ
m
k0

(y)]
∑

k∈Km

∑

j0∈Jm

a′j0,kϕ
m
j0(Xi)ψ

m
k (y) = 0

i.e.
n
∑

i=1

[t(Xi, y) −
∑

k0∈Km

ψm
k0

(Xi+1)ψ
m
k0

(y)]u(Xi, y) = 0

for all u in Sm. So the vector (t(Xi, y) −
∑

k∈Km
ψm

k (Xi+1)ψ
m
k (y))1≤i≤n is or-

thogonal to each vector in W . Since t(Xi, y) belongs to W , the proposition is
proved.

7.2 Proof of Theorem 2

For ρ a real larger than 1, let

Ωρ = {∀t ∈ S ‖t‖2
f ≤ ρ‖t‖2

n}

In the case of an arithmetical mixing, since γ > 14, there exists a real c such
that



















0 < c <
1

6

γc >
7

3

We set in this case qn = 1
2
⌊nc⌋. In the case of a geometrical mixing, we set

qn = 1
2
⌊c ln(n)⌋ where c is a real larger than 7/3γ.

For the sake of simplicity, we suppose that n = 4pnqn, with pn an integer. Let
for i = 1, . . . , n/2, Ui = (X2i−1, X2i).

Let







Al = (U2lqn+1, ..., U(2l+1)qn) l = 0, . . . , pn − 1,

Bl = (U(2l+1)qn+1, ..., U(2l+2)qn) l = 0, . . . , pn − 1.

We use now the mixing assumption A5. As in Viennet [10] we can build a
sequence (A∗

l ) such that















Al and A∗
l have the same distribution,

A∗
l and A∗

l′ are independent if l 6= l′,

P (Al 6= A∗
l ) ≤ β2qn .

In the same way, we build (B∗
l ) and we define for any l ∈ {0, . . . , pn − 1},

A∗
l = (U∗

2lqn+1, ..., U
∗
(2l+1)qn

), B∗
l = (U∗

(2l+1)qn+1, ..., U
∗
(2l+2)qn

) so that the se-
quence (U∗

1 , . . . , U
∗
n/2) and then the sequence (X∗

1 , . . . , X
∗
n) are well defined.

Let now Vi = (X2i, X2i+1) for i = 1, . . . , n/2 and






Cl = (V2lqn+1, ..., V(2l+1)qn) l = 0, . . . , pn − 1,

Dl = (V(2l+1)qn+1, ..., V(2l+2)qn) l = 0, . . . , pn − 1.
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We can build (V ∗∗
1 , . . . , V ∗∗

n/2) and then (X∗∗
2 , . . . , X

∗∗
n+1) such that















Cl and C∗∗
l have the same distribution,

C∗∗
l and C∗∗

l′ are independent if l 6= l′,

P (Cl 6= C∗∗
l ) ≤ β2qn.

We put X∗
n+1 = Xn+1 and X∗∗

1 = X1. Now let

Ω∗ = {∀i Xi = X∗
i = X∗∗

i } and Ω∗
ρ = Ωρ ∩ Ω∗

We denote by πm the orthogonal projection of π on Sm. Now,

E‖π̃ − π1A‖2
n = E

(

‖π̃ − π1A‖2
n1Ω∗

ρ

)

+ E

(

‖π̃ − π1A‖2
n1Ω∗c

ρ

)

(11)

To bound the first term, we observe that for all s, t

γn(t) − γn(s) = ‖t− π‖2
n − ‖s− π‖2

n − 2Zn(t− s)

where Zn(t) =
1

n

n
∑

i=1

{

t(Xi, Xi+1) −
∫

R

t(Xi, y)π(Xi, y)dy
}

.

Since ‖t− π‖2
n = ‖t− π1A‖2

n + ‖π1Ac‖2
n, we can write

γn(t) − γn(s) = ‖t− π1A‖2
n − ‖s− π1A‖2

n − 2Zn(t− s).

The definition of m̂ gives, for some fixed m ∈ Mn,

γn(π̃) + pen(m̂) ≤ γn(πm) + pen(m)

And then

‖π̃ − π1A‖2
n ≤ ‖πm − π1A‖2

n + 2Zn(π̃ − πm) + pen(m) − pen(m̂)

≤ ‖πm − π1A‖2
n + 2‖π̃ − πm‖f sup

t∈Bf (m̂)
Zn(t) + pen(m) − pen(m̂)

where, for all m′, Bf(m
′) = {t ∈ Sm + Sm′ , ‖t‖f = 1}. Let θ a real larger

than 2ρ and p(., .) a function such that θp(m,m′) ≤ pen(m) + pen(m′). Then

‖π̃ − π1A‖2
n1Ω∗

ρ
≤‖πm − π1A‖2

n +
1

θ
‖π̃ − πm‖2

f1Ω∗

ρ
+ 2pen(m)

+θ
∑

m′∈Mn

[

sup
t∈Bf (m′)

Z2
n(t) − p(m,m′)

]

+

1Ω∗

ρ
(12)

But ‖π̃ − πm‖2
f1Ω∗

ρ
≤ ρ‖π̃ − πm‖2

n1Ω∗
ρ
≤ 2ρ‖π̃ − π1A‖2

n1Ω∗
ρ
+ 2ρ‖π1A − πm‖2

n.
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Then, inequality (12) becomes

‖π̃ − π1A‖2
n1Ω∗

ρ

(

1 − 2ρ

θ

)

≤
(

1 +
2ρ

θ

)

‖πm − π1A‖2
n + 2pen(m)

+θ
∑

m′∈Mn

[

sup
t∈Bf (m′)

Z2
n(t) − p(m,m′)

]

+

1Ω∗
ρ

so E

(

‖π̃ − π1A‖2
n1Ω∗

ρ

)

≤ θ + 2ρ

θ − 2ρ
E‖π1A − πm‖2

n +
2θ

θ − 2ρ
pen(m)

+
θ2

θ − 2ρ

∑

m′∈Mn

E





[

sup
t∈Bf (m′)

Z2
n(t) − p(m,m′)

]

+

1Ω∗
ρ



 (13)

We now use the following proposition:

Proposition 7 Let p(m,m′) = 10‖π‖∞
D(m,m′)

n
where D(m,m′) denotes the

dimension of Sm+Sm′. Then, under the assumptions of Theorem 2, there exists
a constant C1 such that

∑

m′∈Mn

E





[

sup
t∈Bf (m′)

Z2
n(t) − p(m,m′)

]

+

1Ω∗



 ≤ C1

n
. (14)

Then, with θ = 3ρ, inequalities (13) and (14) yield

E

(

‖π̃ − π1A‖2
n1Ω∗

ρ

)

≤ 5‖f‖∞‖πm − π1A‖2 + 6pen(m) +
9ρC1

n
(15)

The penalty term pen(m) has to verify pen(m)+pen(m′) ≥ 30ρ‖π‖∞
D(m,m′)

n
i.e. 30ρ‖π‖∞dim(Sm + Sm′) ≤ pen(m) + pen(m′) We choose ρ = 3/2 and so

pen(m) = 45‖π‖∞
Dm1

Dm2

n
.

To bound the second term in (11), we recall (see Section 3) that (π̂m̂(Xi, y))1≤i≤n

is the orthogonal projection of (
∑

k ψk(Xi+1)ψk(y))1≤i≤n on

W = {(t(Xi, y))1≤i≤n, t ∈ Sm̂}

where ψk = ψm̂
k . Thus, since PW denotes the orthogonal projection on W ,

using (7)-(8)
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(π̂m̂(Xi, y))1≤i≤n =PW ((
∑

k

ψk(Xi+1)ψk(y))1≤i≤n)

=PW ((
∑

k

πk(Xi)ψk(y))1≤i≤n) + PW ((
∑

k

εi,kψk(y))1≤i≤n)

=PW (π1A(Xi, y))1≤i≤n) + PW ((
∑

k

εi,kψk(y))1≤i≤n)

We denote by ‖.‖Rn the Euclidean norm in R
n, by X the vector (Xi)1≤i≤n and

by εk the vector (εi,k)1≤i≤n. Thus

‖π1A − π̂m̂‖2
n =

1

n

∫

‖π1A(X, y) − PW (π1A(X, y)) − PW (
∑

k

εkψk(y))‖2
Rndy

=
1

n

∫

‖π1A(X, y) − PW (π1A(X, y))‖2
Rndy +

1

n

∫

‖PW (
∑

k

εkψk(y))‖2
Rndy

≤ 1

n

∫

‖π1A(X, y)‖2
Rndy +

1

n

∫

‖
∑

k

εkψk(y)‖2
Rndy

≤ 1

n

n
∑

i=1

‖π‖∞
∫

π(Xi, y)dy +
1

n

n
∑

i=1

∫

[
∑

k

εi,kψk(y)]
2dy

≤ ‖π‖∞ +
1

n

n
∑

i=1

∑

k

ε2
i,k.

But Assumption M2 implies ‖∑k∈Km̂
ψ2

k‖∞ ≤ φ2Dm̂2
. So, using (8),

ε2
i,k ≤ 2ψ2

k(Xi+1) + 2E[ψk(Xi+1)|Xi]
2

and
∑

k

ε2
i,k ≤ 2

∑

k

ψ2
k(Xi+1) + 2E[

∑

k

ψ2
k(Xi+1)|Xi] ≤ 4φ2Dm̂2

Thus we obtain

‖π1A − π̂m̂‖2
n ≤ ‖π‖∞ + 4φ2Dm̂2

≤ ‖π‖∞ + 4φ2n
1/3 (16)

and, by taking the expectation, E

(

‖π1A − π̂m̂‖2
n1Ω∗c

ρ

)

≤ (‖π‖∞+4φ2n
1/3)P (Ω∗c

ρ ).

We now remark that P (Ω∗c
ρ ) = P (Ω∗c) + P (Ωc

ρ ∩ Ω∗). In the geometric case

β2qn ≤ e−γc ln(n) ≤ n−γc and in the other case β2qn ≤ (2qn)−γ ≤ n−γc. Then

P (Ω∗c) ≤ 4pnβ2qn ≤ n1−cγ .

But we have choosed c such that cγ > 7/3 and so P (Ω∗c) ≤ n−4/3. Now we
will use the following proposition:
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Proposition 8 Let ρ > 1. Then, under the assumptions of Theorem 2 or

Theorem 4, there exists C2 > 0 such that P (Ωc
ρ ∩ Ω∗) ≤ C2

n7/3
.

This proposition implies that E

(

‖π1A − π̂m̂‖2
n1Ω∗c

ρ

)

≤ C3

n
.

Now we use (15) and we observe that this inequality holds for all m in Mn,
so

E‖π̃ − π1A‖2
n ≤ C inf

m∈Mn

(‖π1A − πm‖2 + pen(m)) +
C4

n

with C = max(5‖f‖∞, 6).

7.3 Proof of Corollary 3

To control the bias term, we use the following lemma

Lemma 9 Let πA belong to Bα

2,∞(A). We consider that S ′
m is one of the fol-

lowing spaces on A:

• a space of piecewise polynomials of degrees bounded by si > αi −1 (i = 1, 2)
based on a partition with rectangles of vertices 1/Dm1

and 1/Dm2
,

• a linear span of {φλψµ, λ ∈ ∪m1

0 Λ(j), µ ∈ ∪m2

0 M(k)} where {φλ} and {ψµ}
are orthonormal wavelet bases of respective regularities s1 > α1 − 1 and
s2 > α2 − 1 (here Dmi

= 2mi, i = 1, 2),
• the space of trigonometric polynomials with degree smaller than Dm1

in the
first direction and smaller than Dm2

in the second direction.

Let π′
m be the orthogonal projection of πA on S ′

m. Then, there exists a positive
constant C0 such that

(∫

A
|πA − π′

m|2
)1/2

≤ C0[D
−α1

m1
+D−α2

m2
].

Proof: It is proved in [23] for S ′
m a space of wavelets or polynomials and in

[24] (p. 191 and 200) for a space of trigonometric polynomials that

(∫

A
|πA − π′

m|2
)1/2

≤ C[ωs1+1,1(π,D
−1
m1

) + ωs2+1,2(π,D
−1
m2

)].

The definition of Bα

2,∞(A) implies (
∫

A |πA − π′
m|2)

1/2 ≤ C0[D
−α1

m1
+D−α2

m2
]. 2

If we choose for S ′
m the set of the restrictions to A of the functions of Sm

and πA the restriction of π to A, we can apply Lemma 9. But π′
m is also the
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restriction to A of πm so that

‖π1A − πm‖ ≤ C0[D
−α1

m1
+D−α2

m2
].

According to Theorem 2

E‖π̃ − π1A‖2
n ≤ C ′′ inf

m∈Mn

{

D−2α1

m1
+D−2α2

m2
+
Dm1

Dm2

n

}

.

In particular, if m∗ is such that Dm∗

1
= ⌊n

α2
α1+α2+2α1α2 ⌋ and Dm∗

2
= ⌊(Dm∗

1
)

α1
α2 ⌋

then

E‖π̃ − π1A‖2
n ≤ C ′′′







D−2α1

m∗

1
+
D

1+α1/α2

m∗

1

n







= O
(

n
− 2α1α2

α1+α2+2α1α2

)

.

But the harmonic mean of α1 and α2 is ᾱ = 2α1α2/(α1 + α2). Then E‖π̃ −
π1A‖2

n = O(n− 2ᾱ
2ᾱ+2 ).

The condition Dm1
≤ n1/3 allows this choice of m only if α2

α1+α2+2α1α2
< 1

3
i.e. if

α1−2α2 +2α1α2 > 0. In the same manner, the condition α2−2α1 +2α1α2 > 0
must be verified.

7.4 Proof of Theorem 4

We use the same notations as for the proof of Theorem 2. Let us write

E‖π̃∗ − π1A‖2 = B1 +B2 +B3

with



















B1 = E

(

‖π̃∗ − π1A‖21Ω∗

ρ
1‖π̃‖≤kn

)

B2 = E

(

‖π̃∗ − π1A‖21Ω∗

ρ
1‖π̃‖>kn

)

B3 = E

(

‖π̃∗ − π1A‖21Ω∗c
ρ

)

To bound the first term, we observe that for all m ∈ Mn, on Ω∗
ρ, ‖π̃−πm‖2 ≤

f−1
0 ρ‖π̃ − πm‖2

n. Then

‖π̃ − π1A‖21Ω∗

ρ
≤ 2‖π̃ − πm‖21Ω∗

ρ
+ 2‖πm − π1A‖2

≤ 2f−1
0 ρ‖π̃ − πm‖2

n1Ω∗

ρ
+ 2‖πm − π1A‖2

≤ 2f−1
0 ρ{2‖π̃ − π1A‖2

n1Ω∗
ρ
+ 2‖πm − π1A‖2

n} + 2‖πm − π1A‖2

Thus

B1 ≤ E

(

‖π̃ − π1A‖21Ω∗

ρ

)

≤ 4f−1
0 ρE

(

‖π̃ − π1A‖2
n1Ω∗

ρ

)

+(4f−1
0 ρ‖f‖∞+2)‖πm−π1A‖2.
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But, using (15), we obtain

B1 ≤ (24f−1
0 ρ‖f‖∞ + 2)‖πm − π1A‖2 + 24f−1

0 ρpen(m) + 36f−1
0 ρ2C1

n
.

Since ρ = 3/2, by setting C = max(36f−1
0 ‖f‖∞ + 1, 36f−1

0 ),

B1 ≤ C{‖πm − π1A‖2 + pen(m)} +
81f−1

0 C1

n

for all m ∈ Mn.

Next, the definition of π̃∗ and the Markov inequality provide

B2 ≤ E

(

‖π1A‖21Ω∗
ρ
1‖π̃‖>kn

)

≤ ‖π‖2
E(‖π̃‖21Ω∗

ρ
)

k2
n

. (17)

But ‖π̃‖21Ω∗

ρ
≤ ρf−1

0 ‖π̃‖2
n ≤ 2ρf−1

0 (‖π̃ − π1A‖2
n + ‖π1A‖2

n). Now we use (16)
to state

‖π̃‖21Ω∗
ρ
≤ 2ρf−1

0 (‖π‖∞ + 4φ2n
1/3 + ‖π1A‖2

n)

≤ 2ρf−1
0 (‖π‖∞ + 4φ2n

1/3 +
1

n

n
∑

i=1

‖π‖∞
∫

π(Xi, y)dy]

≤ 2ρf−1
0 (2‖π‖∞ + 4φ2n

1/3).

Then, since kn = n2/3, (17) becomes

B2 ≤ ‖π‖22ρf−1
0 (2‖π‖∞ + 4φ2n

1/3)

k2
n

≤ 4ρf−1
0 ‖π‖2

(

‖π‖∞
n4/3

+
2φ2

n

)

.

Lastly

B3 ≤ E

(

2(‖π̃∗‖2 + ‖π1A‖2)1Ω∗c
ρ

)

≤ 2(k2
n + ‖π‖2)P (Ω∗c

ρ ).

We now remark that P (Ω∗c
ρ ) = P (Ω∗c) + P (Ωc

ρ ∩ Ω∗). In the geometric case

β2qn ≤ e−γc ln(n) ≤ n−γc and in the other case β2qn ≤ (2qn)−γ ≤ n−γc. Then

P (Ω∗c) ≤ 4pnβ2qn ≤ n1−cγ .

But, if γ > 20 in the arithmetic case, we can choose c such that cγ >
10

3
and

so P (Ω∗c) ≤ n−7/3. Then, using Proposition 8,

B3 ≤ 2(n4/3 + ‖π‖2)
1 + C2

n7/3
≤ 2(C2 + 1)(1 + ‖π‖2)

n
.
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7.5 Proof of Theorem 6

Let ψ be a very regular wavelet with compact support. For J = (j1, j2) ∈ Z
2

to be chosen below and K = (k1, k2) ∈ Z
2, we set

ψJK(x, y) = 2(j1+j2)/2ψ(2j1x− k1)ψ(2j2y − k2).

Let π0(x, y) = c01B(y) with B a compact set such that A ⊂ B×B and |B| ≥
2|A|1/2/L, and c0 = |B|−1. So π0 is a transition density with ‖π0‖Bα

2,∞(A) ≤
L/2. Now we set RJ the maximal subset of Z

2 such that

Supp(ψJK) ⊂ A ∀K ∈ RJ , Supp(ψJK) ∩ Supp(ψJK ′) = ∅ if K 6= K ′.

The cardinal of RJ is |RJ | = c2j1+j2, with c a positive constant which depends
only on A and the support of ψ. Let, for all ε = (εK) ∈ {−1, 1}|RJ |,

πε = π0 +
1√
n

∑

K∈RJ

εKψJK .

Let us denote by G the set of all such πε. Since
∫

ψ = 0 and π0 is a transition
density, for all x in R,

∫

πε(x, y)dy = 1. Additionally πε(x, y) = π0(x, y) ≥ 0 if
(x, y) /∈ A, and if (x, y) ∈ A: πε ≥ c0 −2(j1+j2)/2‖ψ‖2

∞/
√
n and then πε(x, y) ≥

c0/2 > 0 as soon as
(

2j1+j2

n

)1/2

≤ c0
2‖ψ‖2

∞
. (18)

Thus, if (18) holds, πε(x, y) ≥ (c0/2)1B(y) for all x, y. It implies that the
underlying Markov chain is Doeblin recurrent and then positive recurrent. We
verify that f = c01B is the stationary density. To prove that πε ∈ B, we still
have to compute ‖πε‖Bα

2,∞(A). Hochmuth [23] proves that for ψ smooth enough

‖∑K∈RJ
εKψJK‖Bα

2,∞(A) ≤ (2j1α1 + 2j2α2)‖∑K∈RJ
εKψJK‖A. Since

‖
∑

K∈RJ

εKψJK‖2
A =

∑

K∈RJ

|εK|2 = c2j1+j2,

then

‖πε‖Bα

2,q(A) ≤
L

2
+

2j1α1 + 2j2α2

√
n

c1/22(j1+j2)/2.

From now on, we suppose that Condition C is verified where

Condition C:
(2j1α1 + 2j2α2)2(j1+j2)/2

√
n

≤ L

2c1/2
.

It entails in particular that (18) holds if j1 and j2 are great enough.Then for
all ε, πε ∈ B. We now use the Lemma 10.2 p.160 in Härdle et al. [25]. The

25



likelihood ratio can be written

Λn(πε∗K
, πε) =

n
∏

i=1

πε∗K
(Xi, Xi+1)

πε(Xi, Xi+1)
.

Note that πε(Xi, Xi+1) > 0 Pπε- and Pπε
∗K

- almost surely (actually the chain
“lives” on B). Then

log(Λn(πε∗K
, πε)) =

n
∑

i=1

log

(

1 − 2√
n

εKψJK(Xi, Xi+1)

πε(Xi, Xi+1)

)

We set UJK(Xi, Xi+1) = −εKψJK(Xi, Xi+1)/πε(Xi, Xi+1) so that

log(Λn(πε∗K
, πε)) =

n
∑

i=1

log

(

1 +
2√
n
UJK(Xi, Xi+1)

)

=
n
∑

i=1

{

θ

(

2√
n
UJK(Xi, Xi+1)

)

+
2√
n
UJK(Xi, Xi+1) −

2

n
U2

JK(Xi, Xi+1)

}

= un + vn − wn

with θ the function defined by θ(u) = log(1 + u) − u+
u2

2
. Now we prove the

three following assertions

1◦ Eπε(|un|) = Eπε

(∣

∣

∣

∑n
i=1 θ

(

2√
n
UJK(Xi, Xi+1)

)∣

∣

∣

)

→
n→∞

0

2◦ Eπε(wn) = Eπε

(

2

n

∑n
i=1U

2
JK(Xi, Xi+1)

)

≤ 4

3◦ Eπε(v
2
n) = Eπε

(

4

n
|∑n

i=1 UJK(Xi, Xi+1)|2
)

≤ 8

1◦ : First we observe that

∥

∥

∥

∥

∥

2√
n
UJK

∥

∥

∥

∥

∥

∞
≤ 2√

n

2(j1+j2)/2‖ψ‖2
∞

c0/2
= O

(

2(j1+j2)/2

√
n

)

and
2(j1+j2)

n
→ 0 since Condition C holds. So there exists some integer n0 such

that ∀n ≥ n0, ∀x, y, |θ(2UJK(x, y)/
√
n)| ≤ |2UJK(x, y)/

√
n|3. But

∫∫

∣

∣

∣

∣

∣

2UJK(x, y)√
n

∣

∣

∣

∣

∣

3

f(x)πε(x, y)dxdy =
8

n
√
n

∫∫ |ψJK(x, y)|3
πε(x, y)2

f(x)dxdy

≤ 8

n
√
n

2(j1+j2)/2‖ψ‖2
∞c0

(c0/2)2

∫∫

ψJK(x, y)2dxdy ≤ 32‖ψ‖2
∞

c0n

(

2(j1+j2)

n

)1/2

.

Then Eπε|un| ≤
n
∑

i=1

32‖ψ‖2
∞

c0n

(

2(j1+j2)

n

)1/2

→n→∞ 0.
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2◦ : We bound the expectation of UJK(Xi, Xi+1)
2:

Eπε(UJK(Xi, Xi+1)
2) =

∫∫ ψ2
JK(x, y)

πε(x, y)
f(x)dxdy ≤ c0

∫∫

A

ψ2
JK(x, y)

c0/2
dxdy ≤ 2.

(19)
And then Eπε(wn) = Eπε ((2/n)

∑n
i=1 UJK(Xi, Xi+1)

2) ≤ 4.

3◦ : We observe that Eπε(UJK(Xi, Xi+1)|X1, . . . , Xi) = 0 and thus
∑n

i=1 UJK(Xi, Xi+1)
is a martingale. A classic property of square integrable martingales involves

Eπε





[

n
∑

i=1

UJK(Xi, Xi+1)

]2


 =
n
∑

i=1

Eπε

[

UJK(Xi, Xi+1)
2
]

.

Thus, using (19), Eπε(v
2
N) = (4/n)

∑n
i=1 Eπε [UJK(Xi, Xi+1)

2] ≤ 8.

We deduce easily from the three previous assertions 1◦, 2◦ and 3◦ that there
exists λ > 0 and p0 such that Pπε(Λn(πε∗K

, πε) > e−λ) ≥ p0. Thus, according
to Lemma 10.2 in [25],

max
πε∈G

Eπε‖π̂n − πε‖2
A ≥ |RJ |

2
δ2e−λp0

where δ = infε 6=ε′ ‖πε − πε′‖A/2 = ‖εKψJK/
√
n‖A = 1/

√
n.

Now for all n we choose J = J(n) = (j1(n), j2(n)) such that

c1/2 ≤ 2j1n
− α2

α1+α2+2α1α2 ≤ c1 and c2/2 ≤ 2j2n
− α1

α1+α2+2α1α2 ≤ c2

with c1 and c2 such that (cα1

1 + cα2

2 )
√
c1c2 ≤ L/(2c1/2) so that Condition C is

satisfied. Moreover, we have

|RJ |δ2 ≥ cc1c2
4

n
α2+α1

α1+α2+2α1α2
−1 ≥ cc1c2

4
n

−2α1α2
α1+α2+2α1α2

Thus

max
πε∈G

Eπε‖π̂n − πε‖2
A ≥ ce−λp0c1c2

8
n

−2α1α2
α1+α2+2α1α2 .

And then for all estimator

sup
π∈B

Eπ‖π̂n − π‖2
A ≥ Cn− 2ᾱ

2ᾱ+2

with C = ce−λp0c1c2/8.
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7.6 Proof of Proposition 7

Let















Γi(t) = t(Xi, Xi+1) −
∫

t(Xi, y)π(Xi, y)dy,

Γ∗
i (t) = t(X∗

i , X
∗
i+1) −

∫

t(X∗
i , y)π(X∗

i , y)dy,

Γ∗∗
i (t) = t(X∗∗

i , X
∗∗
i+1) −

∫

t(X∗∗
i , y)π(X∗∗

i , y)dy.

We now define Z∗
n(t):

Z∗
n(t) =

1

n

∑

i odd

Γ∗
i (t) +

1

n

∑

i even

Γ∗∗
i (t).

Let us remark that Z∗
n(t)1Ω∗ = Zn(t)1Ω∗ . Next we split each of these terms :

Z∗
n,1(t) =

1

n

pn−1
∑

l=0

2(2l+1)qn−1
∑

i=4lqn+1,i odd

Γ∗
i (t), Z∗

n,2(t) =
1

n

pn−1
∑

l=0

2(2l+2)qn−1
∑

i=2(2l+1)qn+1,i odd

Γ∗
i (t),

Z∗
n,3(t) =

1

n

pn−1
∑

l=0

2(2l+1)qn
∑

i=4lqn+2,i even

Γ∗∗
i (t), Z∗

n,4(t) =
1

n

pn−1
∑

l=0

2(2l+2)qn
∑

i=2(2l+1)qn+2,i even

Γ∗∗
i (t).

We use the following lemma:

Lemma 10 (Talagrand [16])
Let U0, . . . ,UN−1 i.i.d. variables and (ζt)t∈B a set of functions.

Let G(t) =
1

N

N−1
∑

l=0

ζt(Ul). We suppose that

(1) sup
t∈B

‖ζt‖∞ ≤M1, (2) E(sup
t∈B

|G(t)|) ≤ H, (3) sup
t∈B

V ar[ζt(U0)] ≤ v.

Then, there exists K > 0, K1 > 0, K2 > 0 such that

E

[

sup
t∈B

G2(t) − 10H2

]

+

≤ K

[

v

N
e−K1

NH2

v +
M2

1

N2
e
−K2

NH
M1

]

HereN = pn,B = Bf (m
′) and for l ∈ {0, . . . , pn−1}, Ul = (X∗

4lqn+1, .., X
∗
2(2l+1)qn

),

ζt(x1, . . . , x2qn) =
1

qn

2qn−1
∑

i=1,i odd

t(xi, xi+1) −
∫

t(xi, y)π(xi, y)dy.

Then

G(t) =
1

pn

pn−1
∑

l=0

1

qn

2(2l+1)qn−1
∑

i=4lqn+1,i odd

Γ∗
i (t) = 4Z∗

n,1(t).
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We now compute M1, H and v.

(1)We recall that Sm + Sm′ is included in the model Sm′′ with dimension
max(Dm1

, Dm′

1
) max(Dm2

, Dm′

2
).

sup
t∈B

‖ζt‖∞≤ sup
t∈B

‖t‖∞
1

qn

2qn−1
∑

i=1,i odd

(

1 +
∫

π(xi, y)dy
)

≤ 2φ0

√

max(Dm1
, Dm′

1
) max(Dm2

, Dm′

2
)‖t‖ ≤ 2φ0

f0
n1/3.

Then we set M1 =
2φ0

f0

n1/3.

(2) Since A0 and A∗
0 have the same distribution, ζt(U0) = 1

qn

∑2qn−1
i=1,i odd Γ∗

i (t)

has the same distribution than 1
qn

∑2qn−1
i=1,i odd Γi(t). We observe that E(Γi(t)|Xi) =

0 and then for all set I

E





[

∑

i∈I

Γi(t)

]2


 = E





∑

i,j∈I

Γi(t)Γj(t)





= 2E





∑

j<i

E[Γi(t)Γj(t)|Xi]



+
∑

i∈I

E

[

Γ2
i (t)

]

= 2E





∑

j<i

Γj(t)E[Γi(t)|Xi]



+
∑

i∈I

E

[

Γ2
i (t)

]

=
∑

i∈I

E

[

Γ2
i (t)

]

.

In particular

Var[ζt(U0)] = E











1

qn

2qn−1
∑

i=1,i odd

Γi(t)





2




 =
1

q2
n

2qn−1
∑

i=1,i odd

E

[

Γ2
i (t)

]

≤ 1

q2
n

2qn−1
∑

i=1,i odd

E

[

t2(Xi, Xi+1)
]

≤ 1

qn
‖π‖∞‖t‖2

f .

Then v =
‖π‖∞
qn

.

(3) Let (ϕ̄j ⊗ ψk)(j,k)∈Λ(m,m′) an orthonormal basis of (Sm + Sm′ , ‖.‖f).

29



E(sup
t∈B

|G2(t)|)≤
∑

j,k

E(G2(ϕ̄j ⊗ ψk))

≤
∑

j,k

1

p2
nq

2
n

E











pn−1
∑

l=0

2(2l+1)qn−1
∑

i=4lqn+1,i odd

Γ∗
i (ϕ̄j ⊗ ψk)





2






≤
∑

j,k

16

n2

pn−1
∑

l=0

E











2(2l+1)qn−1
∑

i=4lqn+1,i odd

Γ∗
i (ϕ̄j ⊗ ψk)





2






where we used the independence of the A∗
l . Now we can replace Γ∗

i by Γi in the
sum because Al and A∗

l have the same distribution and we use as previously
the martingale property of the Γi.

E(sup
t∈B

|G2(t)|)≤
∑

j,k

16

n2

pn−1
∑

l=0

E











2(2l+1)qn−1
∑

i=4lqn+1,i odd

Γi(ϕ̄j ⊗ ψk)





2






≤
∑

j,k

16

n2

pn−1
∑

l=0

2(2l+1)qn−1
∑

i=4lqn+1,i odd

E

(

Γ2
i (ϕ̄j ⊗ ψk)

)

≤
∑

j,k

4

n
‖π‖∞‖ϕ̄j ⊗ ψk‖2

f ≤ 4‖π‖∞
D(m,m′)

n
.

Then E
2(sup

t∈B
|G(t)|) ≤ 4‖π‖∞

D(m,m′)

n
and H2 = 4‖π‖∞

D(m,m′)

n
.

According to Lemma 10, there exists K ′ > 0, K1 > 0, K ′
2 > 0 such that

E

[

sup
t∈Bf (m′)

(4Z∗
n,1)

2(t) − 10H2

]

+

≤ K ′
[

1

n
e−K1D(m,m′) + n−4/3q2

ne
−K ′

2
n1/6

√
D(m,m′)/qn

]

.

But qn ≤ nc with c < 1
6
. So

∑

m′∈Mn

E

[

sup
t∈Bf (m′)

Z∗2
n,1(t) −

p(m,m′)

4

]

+

≤ K ′

n





∑

m′∈Mn

e−K1D(m,m′) + n2c−1/3|Mn|e−K ′

2
n1/6−c



 ≤ A1

n
. (20)

In the same way,
∑

m′∈Mn
E

[

sup
t∈Bf (m′)

Z∗2
n,r(t) − p(m,m′)/4

]

+

≤ Ar/n for r =
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2, 3, 4. And then

∑

m′∈Mn

E





[

sup
t∈Bf (m′)

Z2
n(t) − p(m,m′)

]

+

1Ω∗





=
∑

m′∈Mn

E





[

sup
t∈Bf (m′)

Z∗2
n (t) − p(m,m′)

]

+

1Ω∗



 ≤ C1

n
.

7.7 Proof of Proposition 8

First we observe that

P (Ωc
ρ ∩ Ω∗) ≤ P

(

sup
t∈B

|νn(t2)| > 1 − 1/ρ

)

where νn(t) =
1

n

n
∑

i=1

∫

[t(X∗
i , y) − E(t(X∗

i , y))]dy and B = {t ∈ S ‖t‖f = 1}.

But, if t(x, y) =
∑

j,k aj,kϕj(x)ψk(y), then

νn(t2) =
∑

j,j′

∑

k

aj,kaj′,kν̄n(ϕjϕj′)

where

ν̄n(u) =
1

n

n
∑

i=1

[u(X∗
i ) − E(u(X∗

i ))]. (21)

Let bj = (
∑

k a
2
j,k)

1/2, then |νn(t2)| ≤ ∑

j,j′ bjbj′|ν̄n(ϕjϕj′)| and, if t ∈ B,
∑

j b
2
j =

∑

j

∑

k a
2
j,k = ‖t‖2 ≤ f−1

0 .

Thus

sup
t∈B

|νn(t2)| ≤ f−1
0 sup
∑

b2j=1

∑

j,l

bjbl|ν̄n(ϕjϕl)|.

Lemma 11 Let Bj,l = ‖ϕjϕl‖∞ and Vj,l = ‖ϕjϕl‖2. Let, for any symmetric
matrix (Aj,l)

ρ̄(A) = sup
∑

a2
j=1

∑

j,l

|ajal|Aj,l

and L(ϕ) = max{ρ̄2(V ), ρ̄(B)}. Then, if M2 is satisfied, L(ϕ) ≤ φ1D2
n.

This lemma is proved in Baraud et al. [26].

Let x =
f 2

0 (1 − 1/ρ)2

40‖f‖∞L(ϕ)
and ∆ =

{

∀j∀l |ν̄n(ϕjϕl)| ≤ 4
[

Bj,lx+ Vj,l

√

2‖f‖∞x
]}

.

On ∆:
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sup
t∈B

|νn(t
2)| ≤ 4f−1

0 sup
∑

b2j=1

∑

j,l

bjbl

[

Bj,lx+ Vj,l

√

2‖f‖∞x
]

≤ 4f−1
0

[

ρ̄(B)x+ ρ̄(V )
√

2‖f‖∞x
]

≤ (1 − 1/ρ)





f0(1 − 1/ρ)

10‖f‖∞
ρ̄(B)

L(ϕ)
+

2√
5

(

ρ̄2(V )

L(ϕ)

)1/2




≤ (1 − 1/ρ)

[

1

10
+

2√
5

]

≤ (1 − 1/ρ).

Then P

(

sup
t∈B

|νn(t
2)| > 1 − 1

ρ

)

≤ P (∆c). But ν̄n(u) = 2ν̄n,1(u)+2ν̄n,2(u) with

ν̄n,r(u) =
1

pn

pn−1
∑

l=0

Yl,r(u) r = 1, 2

with



















Yl,1(u) =
1

2qn

∑2(2l+1)qn

i=4lqn+1 [u(X∗
i ) − E(u(X∗

i ))],

Yl,2(u) =
1

2qn

∑2(2l+2)qn

i=2(2l+1)qn+1[u(X
∗
i ) − E(u(X∗

i ))].

To bound P (ν̄n,1(ϕjϕl) ≥ Bj,lx + Vj,l

√

2‖f‖∞x), we will use the Bernstein

inequality given in Birgé and Massart [27]. That is why we bound E|Yl,1(u)|m:

E|Yl,1(u)|m ≤ 1

4q2
n

(2‖u‖∞)m−2
E

∣

∣

∣

∣

∣

∣

2(2l+1)qn
∑

i=4lqn+1

[u(X∗
i ) − E(u(X∗

i ))]

∣

∣

∣

∣

∣

∣

2

≤ (2‖u‖∞)m−2 1

4q2
n

E

∣

∣

∣

∣

∣

∣

2(2l+1)qn
∑

i=4lqn+1

[u(Xi) − E(u(Xi))]

∣

∣

∣

∣

∣

∣

2

≤ (2‖u‖∞)m−2 1

4q2
n

E

∣

∣

∣

∣

∣

∣

2(2l+1)qn
∑

i=2lqn+1

[u(X1) − E(u(X1))]

∣

∣

∣

∣

∣

∣

2

since X∗
i = Xi on Ω∗ and the Xi have the same distribution than X1. Thus

E|Yl,1(u)|m ≤ (2‖u‖∞)m−2
E|u(X1) − E(u(X1))|2 ≤ (2‖u‖∞)m−2

∫

u2(x)f(x)dx

≤ 2m−2(‖u‖∞)m−2(
√

‖f‖∞‖u‖)2. (22)

With u = ϕjϕj′, E|Yl,1(ϕjϕj′)|m ≤ 2m−2(Bj,j′)
m−2(

√

‖f‖∞Vj,j′)
2. And then

P (|ν̄n,r(ϕjϕl)| ≥ Bj,lx+ Vj,l

√

2‖f‖∞x) ≤ 2e−pnx.

32



Given that P (Ωc
ρ∩Ω∗) ≤ P (∆c) =

∑

j,l P
(

|ν̄n(ϕjϕl)| > 4(Bj,lx+ Vj,l

√

2‖f‖∞x)
)

,

P (Ωc
ρ ∩ Ω∗)≤ 4D2

n exp

{

−pnf
2
0 (1 − 1/ρ)2

40‖f‖∞L(ϕ)

}

≤ 4n2/3 exp

{

−f
2
0 (1 − 1/ρ)2

160‖f‖∞
n

qnL(ϕ)

}

.

But L(ϕ) ≤ φ1D2
n ≤ φ1n

2/3 and qn ≤ n1/6 so

P (Ωc
ρ ∩ Ω∗) ≤ 4n2/3 exp

{

−f
2
0 (1 − 1/ρ)2

160‖f‖∞φ1
n1/6

}

≤ C

n7/3
. (23)
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Appendix : random penalty

Here we prove that Theorem 2 is valid with a penalty which does not depend
on ‖π‖∞.

Theorem 12 We consider the following penalty :

pen(m) = K0‖π̂‖∞
Dm1

Dm2

n

where K0 is a numerical constant and π̂ = π̂m∗ with Sm∗ a space of trigono-
metric polynomials such that

lnn ≤ Dm1∗ = Dm2∗ ≤ n1/6.

If the restriction of π to A belongs to B
(α1,α2)
2,∞ (A) with α1 > 3/2 and α2 >

max( α1

2α1−3
, 3α1

2α1−1
), then, under assumptions of Theorem 2, for n large enough,

E‖π1A − π̃‖2
n ≤ C inf

m∈Mn

{

d2(π1A, Sm) +
Dm1

Dm2

n

}

+
C ′

n
.

Remark 13 The condition on the regularity of π is verified for example if
α1 > 2 and α2 > 2. If α1 = α2 = α, it is equivalent to α > 2.
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Proof: We recall that ‖π‖∞ denotes actually ‖π1A‖∞ and we introduce the
following set:

Λ =

{∣

∣

∣

∣

∣

‖π̂‖∞
‖π1A‖∞

− 1

∣

∣

∣

∣

∣

<
1

2

}

.

As previously, we decompose the space:

E‖π̃−π1A‖2
n = E

(

‖π̃ − π1A‖2
n1Ω∗

ρ∩Λ

)

+E

(

‖π̃ − π1A‖2
n1Ω∗

ρ∩Λc

)

+E

(

‖π̃ − π1A‖2
n1Ω∗c

ρ

)

We have already dealt with the third term. For the first term, we can proceed
as in the proof of Theorem 2 as soon as

θp(m,m′) ≤ pen(m) + pen(m′)

with θ = 3ρ = 9/2 and p(m,m′) = 10‖π‖∞D(m,m′)/n. But on Λ, ‖π‖∞ <
2‖π̂‖∞ and so

θp(m,m′) = 10θ‖π‖∞
D(m,m′)

n
≤ 20θ‖π̂‖∞

D(m,m′)

n

≤ 20θ‖π̂‖∞
Dm1

Dm2

n
+ 20θ‖π̂‖∞

Dm′

1
Dm′

2

n

It is sufficient to set K0 = 20θ.

Now, inequality (16) gives

E

(

‖π1A − π̂m̂‖2
n1Ω∗

ρ∩Λc

)

≤ (‖π‖∞ + 4φ2n
1/3)P (Ω∗

ρ ∩ Λc).

It remains to prove that P (Ω∗
ρ ∩ Λc) ≤ Cn−4/3 for some constant C.

P (Ω∗
ρ ∩ Λc) =P (|‖π̂‖∞ − ‖π1A‖∞|1Ω∗

ρ
≥ ‖π‖∞/2) ≤ P (‖π̂ − π1A‖∞1Ω∗

ρ
≥ ‖π‖∞/2)

≤P (‖π̂ − πm∗‖∞1Ω∗

ρ
≥ ‖π‖∞/4) + P (‖πm∗ − π1A‖∞ ≥ ‖π‖∞/4)

≤P



‖π̂ − πm∗‖1Ω∗

ρ
≥ ‖π‖∞

4φ0

√

Dm1∗Dm2∗



+ P (‖πm∗ − π1A‖∞ ≥ ‖π‖∞/4)

since ‖π̂ − πm∗‖∞ ≤ φ0

√

Dm∗1
Dm∗2

‖π̂ − πm∗‖.

Furthermore the inequality γn(π̂) ≤ γn(πm∗) leads to

‖π̂ − π1A‖2
n ≤ ‖πm∗ − π1A‖2

n +
1

θ′
‖π̂ − πm∗‖2

f + θ′ sup
t∈Bf (m∗)

Z2
n(t)

and then, on Ωρ,
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‖π̂ − πm∗‖2
f

(

1 − 2ρ

θ′

)

≤ 4ρ‖πm∗ − π1A‖2
n + 2ρθ′ sup

t∈Bf (m∗)
Z2

n(t)

so ‖π̂ − πm∗‖2 ≤ 4ρθ′f−1
0

θ′ − 2ρ
‖πm∗ − π1A‖2

n +
2ρθ′2f−1

0

θ′ − 2ρ
sup

t∈Bf (m∗)
Z2

n(t)

≤ 12ρf−1
0 |A2|‖πm∗ − π1A‖2

∞ + 18ρ2f−1
0 sup

t∈Bf (m∗)
Z2

n(t)

with θ′ = 3ρ and by remarking that for t with support A, ‖t‖2
n ≤ |A2|‖t‖2

∞.
Thus

P (Ω∗
ρ ∩ Λc) ≤ P ( sup

t∈Bf (m∗)
Z2

n(t)1Ω∗

ρ
≥ ‖π‖2

∞
32φ2

0n
1/3

1

18ρ2f−1
0

)

+ P (‖πm∗ − π1A‖2
∞ ≥ ‖π‖2

∞
32φ2

0Dm1∗Dm2∗

1

12ρf−1
0 |A2|

)

+ P (‖πm∗ − π1A‖∞ ≥ ‖π‖∞/4)

≤ P ( sup
t∈Bf (m∗)

Z2
n(t)1Ω∗ ≥ a

n1/3
) + P (Dm1∗Dm2∗‖πm∗ − π1A‖2

∞ ≥ b)

+ P (‖πm∗ − π1A‖∞ ≥ ‖π‖∞
4

)

(24)

with a =
‖π‖2

∞
32φ2

0

1

18ρ2f−1
0

and b =
‖π‖2

∞
32φ2

0

1

12ρf−1
0 |A2|

.

We will first study the two last terms in (24). Since the restriction πA of

π belongs to B
(α1,α2)
2,∞ (A), the imbedding theorem proved in Nikol′skĭı [24]

p.236 implies that πA belongs to B(β1,β2)
∞,∞ (A) with β1 = α1(1 − 1/ᾱ) and

β2 = α2(1 − 1/ᾱ). Then the approximation lemma 9 (which is still valid
for the trigonometric polynomial spaces with the infinite norm instead of the
L2 norm) yields to

‖πm∗ − π1A‖∞ ≤ C(D−β1

m1∗ +D−β2

m2∗).

And then, since Dm1∗ = Dm2∗,

Dm1∗Dm2∗‖πm∗ − π1A‖2
∞≤C ′(D2−2β1

m1∗ +D2−2β2

m1∗ )

≤C ′((lnn)2−2β1 + (lnn)2−2β2) → 0

Indeed







2 − 2β1 < 0 ⇔ 2α1α2 − 3α2 − α1 > 0

2 − 2β2 < 0 ⇔ 2α1α2 − 3α1 − α2 > 0
and this double condition is

ensured when α1 > 3/2 and α2 > max( α1

2α1−3
, 3α1

2α1−1
). Consequently, for n large
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enough,

P (Dm1∗Dm2∗‖πm∗ − π1A‖2
∞ ≥ b) + P (‖πm∗ − π‖∞ ≥ ‖π‖∞

4
) = 0.

We will now prove that

P

(

sup
t∈Bf (m∗)

Z2
n(t)1Ω∗ ≥ a

n1/3

)

≤ C

n4/3

and then using (24), we will have P (Ω∗
ρ ∩ Λc) ≤ Cn−4/3. We remark that, if

(ϕj ⊗ ψk)j,k is a base of (Sm∗, ‖.‖f),

sup
t∈Bf (m∗)

Z2
n(t) ≤

∑

j,k

Z2
n(ϕj ⊗ ψk)

and we recall that, on Ω∗, Zn(t) =
∑4

r=1 Z
∗
n,r(t) (see the proof of Proposition

7). So we are interested in

P

(

Z∗2
n,1(ϕj ⊗ ψk)1Ω∗ ≥ a

4Dm1∗Dm2∗n
1/3

)

.

Let x = Bn−2/3 with B such that 2f−2
0 B2 + 4‖π‖∞B ≤ a/4 (for example

B = inf(1, a/8(f−2
0 + 2‖π‖∞)). Then

(
√

2‖π‖∞x+
√

Dm1∗Dm2∗f
−1
0 x)2 ≤ a

4Dm1∗Dm2∗n
1/3
.

So we will now bound P (Z∗
n,1(ϕj⊗ψk)1Ω∗ ≥

√

2‖π‖∞x+
√

Dm1∗Dm2∗f
−1
0 x) by

using the Bernstein inequality given in [27]. That is why we bound E| 1
4qn

∑2qn−1
i=1,i odd Γ∗

i (t)|m
for all integer m ≥ 2,

E| 1

4qn

2qn−1
∑

i=1,i odd

Γ∗
i (t)|m ≤ (2‖t‖∞qn)m−2

(4qn)m
E

∣

∣

∣

∣

∣

∣

2qn−1
∑

i=1,i odd

[t(X∗
i , X

∗
i+1) −

∫

t(X∗
i , y)π(X∗

i , y)dy]

∣

∣

∣

∣

∣

∣

2

≤
(‖t‖∞

2

)m−2
1

16q2
n

E

∣

∣

∣

∣

∣

∣

2qn−1
∑

i=1,i odd

[t(Xi, Xi+1) −
∫

t(Xi, y)π(Xi, y)dy]

∣

∣

∣

∣

∣

∣

2

≤
(‖t‖∞

2

)m−2
1

16

∫

t2(x, y)f(x)π(x, y)dxdy

≤ 1

2m+2
(‖t‖∞)m−2‖π‖∞‖t‖2

f .

Then
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E| 1

4qn

2qn−1
∑

i=1,i odd

Γi∗(ϕj ⊗ ψk)|m ≤ 1

2m+2
(
√

Dm1∗Dm2∗f
−1
0 )m−2‖π‖∞.

Thus the Bernstein inequality gives

P (|Z∗
n,1(ϕj ⊗ ψk)| ≥

√

Dm1∗Dm2∗f
−1
0 x+

√

2‖π‖∞x) ≤ 2e−pnx.

Hence

P ( sup
t∈Bf (m∗)

Z∗2
n,1(t)1Ω∗ ≥ a

4n1/3
)≤ 2Dm1∗Dm2∗ exp{−pnBn

−2/3}

≤ 2n2/3 exp{−B
4

n1/3

qn
}.

But 2n2/3 exp{−B
4

n1/3

qn
} ≤ Cn−4/3 since qn ≤ n1/6 and so

P

(

sup
t∈Bf (m∗)

Z2
n(t)1Ω∗ ≥ a

n1/3

)

≤ 4C

n4/3
.
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[19] L. Birgé, Approximation dans les espaces métriques et théorie de l’estimation,
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