N
N

N

HAL

open science

Adaptive estimation of the transition density of a
Markov chain

Claire Lacour

» To cite this version:

Claire Lacour. Adaptive estimation of the transition density of a Markov chain.
nales de DlInstitut Henri Poincaré (B) Probabilités et Statistiques, 2007, 43 (5), pp.571-597.

10.1016/j.anihpb.2006.09.003 . hal-00115617

HAL Id: hal-00115617
https://hal.science/hal-00115617
Submitted on 22 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

An-


https://hal.science/hal-00115617
https://hal.archives-ouvertes.fr

hal-00115617, version 1 - 22 Nov 2006

Adaptive estimation of the transition density
of a Markov Chain

Claire Lacour

Laboratoire MAPS, Université Paris 5, 45, rue des Saints-Peres, 75270 Paris
Cedex 06, France
lacour@math-info.univ-pariss. fr

Abstract

In this paper a new estimator for the transition density 7 of an homogeneous Markov
chain is considered. We introduce an original contrast derived from regression frame-
work and we use a model selection method to estimate m under mild conditions.

The resulting estimate is adaptive with an optimal rate of convergence over a large

(a1,

@) . . . .
900 - Some applications and simulations are

range of anisotropic Besov spaces B
also presented.

Résumé

Dans cet article, on considére un nouvel estimateur de la densité de transition 7
d’une chaine de Markov homogene. Pour cela, on introduit un contraste original issu
de la théorie de la régression et on utilise une méthode de sélection de modeles pour
estimer 7 sous des conditions peu restrictives. L’estimateur obtenu est adaptatif et

la vitesse de convergence est optimale pour une importante classe d’espaces de Besov
(a1,02)

900 - On présente également des applications et des simulations.

anisotropes B
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1 Introduction

We consider (X;) a homogeneous Markov chain. The purpose of this paper
is to estimate the transition density of such a chain. This quantity allows
to comprehend the form of dependence between variables and is defined by
m(z,y)dy = P(X;41 € dy|X; = z). It enables also to compute other quan-
tities, like E[F(X;;1)|X; = z] for example. As many authors, we choose for
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this a nonparametric approach. Roussas [1] first studies an estimator of the
transition density of a Markov chain. He proves the consistency and the asymp-
totic normality of a kernel estimator for chains satisfying a strong condition
known as Doeblin’s hypothesis. In Bosq [2], an estimator by projection is
studied in a mixing framework and the consistence is also proved. Basu and
Sahoo [3] establish a Berry-Essen inequality for a kernel estimator under an
assumption introduced by Rosenblatt, weaker than the Doeblin’s hypothesis.
Athreya and Atuncar [4] improve the result of Roussas since they only need
the Harris recurrence of the Markov chain. Other authors are interested in
the estimation of the transition density in the non-stationary case: Doukhan
and Ghindes [5] bound the integrated risk for any initial distribution. In [6],
recursive estimators for a non-stationary Markov chain are described. More
recently, Clemencon [7] computes the lower bound of the minimax L* risk and
describes a quotient estimator using wavelets. Lacour [8] finds an estimator by
projection with model selection that reaches the optimal rate of convergence.

All these authors have estimated 7 by observing that 7 = g/ f where g is the
density of (X;, X;11) and f the stationary density. If § and f are estimators
of g and f, then an estimator of m can be obtained by writing & = g/ f. But
this method has the drawback that the resulting rate of convergence depends
on the regularity of f. And the stationary density f can be less regular than
the transition density.

The aim here is to find an estimator 7 of 7 from the observations X, ..., X, 4
such that the order of the L? risk depends only on the regularity of 7 and is
optimal.

Clémencon [7] introduces an estimation procedure based on an analogy with
the regression framework using the thresholding of wavelets coefficients for
regular Markov chains. We propose in this paper an other method based on
regression, which improves the rate and has the advantage to be really com-
putable. Indeed, this method allows to reach the optimal rate of convergence,
without the logarithmic loss obtained by Clémencon [7] and can be applied to
[B-mixing Markov chains (the notion of "regular” Markov chains in [7] is equiv-
alent to ®-mixing and is then a stronger assumption). We use model selection
via penalization as described in [9] with a new contrast inspired by the classi-
cal regression contrast. To deal with the dependence we use auxiliary variables
X/ as in [10]. But contrary to most cases in such estimation procedure, our
penalty does not contain any mixing term and is entirely computable.

In addition, we consider transition densities belonging to anisotropic Besov
spaces, i.e. with different regularities with respect to the two directions. Our
projection spaces (piecewise polynomials, trigonometric polynomials or wave-
lets) have different dimensions in the two directions and the procedure selects
automatically both well fitted dimensions. A lower bound for the rate of con-



vergence on anisotropic Besov balls is proved, which shows that our estimation
procedure is optimal in a minimax sense.

The paper is organized as follows. First, we present the assumptions on the
Markov chain and on the collections of models. We also give examples of chains
and models. Section 3 is devoted to estimation procedure and the link with
classical regression. The bound on the empirical risk is established in Section
4 and the L? control is studied in Section 5. We compute both upper bound
and lower bound for the mean integrated squared error. In Section 6, some
simulation results are given. The proofs are gathered in the last section.

2 Assumptions
2.1 Assumptions on the Markov chain

We consider an irreducible Markov chain (X,,) taking its values in the real
line R. We suppose that (X,,) is positive recurrent, i.e. it admits a stationary
probability measure p (for more details, we refer to [11]). We assume that
the distribution p has a density f with respect to the Lebesgue measure and
that the transition kernel P(z, A) = P(X;1 € A|X; = x) has also a density,
denoted by m. Since the number of observations is finite, 7 is estimated on a
compact set A = A; x Ay only. More precisely, the Markov process is supposed
to satisfy the following assumptions:

Al. (X,) is irreducible and positive recurrent.
A2. The distribution of Xy is equal to u , thus the chain is (strictly) stationary.
A3. The transition density 7 is bounded on A, i.e.
[ loe 1= SUp(y e | )] < 0
A4. The stationary density f verifies || f|lo := sup,cq4, |f(2)| < oo and there
exists a positive real fy such that, for all z in Ay, f(x) > fo.
A5. The chain is geometrically [-mixing (5, < e 77), or arithmetically (-

mixing (4, < ¢77).

Since (X;) is a stationary Markov chain, the [-mixing is very explicit, the
mixing coefficients can be written:

By = [ 1P(,.) = pllrv f(x)da (1)

where ||.||7v is the total variation norm (see [12]).

Notice that we distinguish the sets A; and As in this work because the two
directions z and y in 7(x, y) do not play the same role, but in practice A; and



Ay will be equal and identical or close to the value domain of the chain.
2.2 Ezxamples of chains

A lot of processes verify the previous assumptions, as (classical or more gen-
eral) autoregressive processes, or diffusions. Here we give a nonexhaustive list
of such chains.

2.2.1 Diffusion processes

We consider the process (X;a)i<i<n, where A > 0 is the observation step and
(X¢)t>0 is defined by

dX; = b(X,)dt + o(X,)dW,
where W is the standard Brownian motion, b is a locally bounded Borel func-
tion and ¢ an uniformly continuous function. We suppose that the drift func-
tion b and the diffusion coefficient o satisfy the following conditions, given in
[13](Proposition 1):

(1) there exists A_, A; such that Vo #0, 0< X <o?(z) <Ay,
(2) there exists My > 0, > —1 and r > 0 such that

V|z| > My, ab(z) < —r|z|*

Then, if X, follows the stationary distribution, the discretized process (X;a)i<i<n
satisfies Assumptions A1-A5. Note that the mixing is geometrical as soon as
a > 0. The continuity of the transition density ensures that Assumption A3
holds. Moreover, we can write

1 e b(u)
— _ep |2 / d
f() Mao?(x) P [ 0o o2(u) u}
with M such that [ f = 1. Consequently Assumption A4 is verified with
1/lloe < 575 exp [ subyea, fi bu)du] and fo > g exp 32 infuea, fi b(u)du].

2.2.2  Nonlinear AR(1) processes
Let us consider the following process
Xn=¢(Xn-1) +€x, 1m

where €, , has a positive density [, with respect to the Lebesgue measure,
which does not depend on n. We suppose that the following conditions are
verified:



(1) There exist M > 0 and p < 1 such that, for all |x| > M, |p(z)| < p|z|
and sup <, |¢(7)] < oco.
(2) There exist [y > 0, {; > 0 such that Y,y 1y < l.(y) <I;.

Then Mokkadem [14] proves that the chain is Harris recurrent and geometri-
cally ergodic. It implies that Assumptions A1 and A5 are satisfied. Moreover
m(x,y) = l.(y — p(x)) and f(y) = [ f(z)m(z,y)dr and then Assumptions
A3-A4 hold with fo > Iy and || fleo < [|I7]lee < 1.

2.2.83 ARX(1,1) models
The nonlinear process ARX(1,1) is defined by
X, = F(Xn—la Zn) + gn

where F' is bounded and (&,), (Z,,) are independent sequences of i.i.d. random
variables with E|,,| < co. We suppose that the distribution of Z,, has a positive
density [ with respect to the Lebesgue mesure. Assume that there exist p < 1,
a locally bounded and mesurable function A : R — R such that Eh(Z,) < oo
and positive constants M, ¢ such that

V|(u,v)| > M |F(u,v)| < plu| + h(v) —cand sup |F(z)| < oo.
| <M

Then Doukhan [12] proves (p.102) that (X,,) is a geometrically f—mixing
process. We can write

n(e,y) = [ 1) fely = Flo,2)dz

where fe is the density of &,. So, if we assume furthermore that there exist
ap,a; > 0 such that ay < fe < aq, then Assumptions A3-A4 are verified with
Jo = ap and || fllec < [7]loc < a1.

2.2.4 ARCH processes

The model is
Xn+1 = F(Xn) + G(Xn)gn-l—l

where I’ and G are continuous functions and for all z, G(x) # 0. We suppose
that the distribution of ,, has a positive density [ with respect to the Lebesgue
measure and that there exists s > 1 such that E|e,|* < oo. The chain (X,,)
satisfies Assumptions Al and A5 if (see [15]):

s\1/s
oy PO+ G (Ele, )

< 1. (2)



In addition, we assume that Vo [y < [(x) < [;. Then Assumption A3 is
verified with ||7||s < l1/infieca, G(x). And Assumption A4 holds with fo >

lof fG™hand [|flle <0 [ fGT

2.8  Assumptions on the models

In order to estimate 7, we need to introduce a collection {S,,,m € M,} of
spaces, that we call models. For each m = (my, ms), Sy, is a space of functions
with support in A defined from two spaces: F,,, and H,,,. F,,, is a subspace
of (L N L>®)(R) spanned by an orthonormal basis (¢7")je.,, With [Jp| = Dy,
such that, for all j, the support of 7" is included in A;. In the same way H,,,
is a subspace of (L? N L*)(R) spanned by an orthonormal basis (V] )rex,,
with |K,,| = D,,, such that, for all k, the support of 7" is included in As.
Here j and k are not necessarily integers, it can be couples of integers as in
the case of a piecewise polynomial space. Then, we define

S = Finy @ Hpy = {t> t(l‘,y) = Z Z QTkQO;n(,I’)’l?Z)?(y)}

J€EIm EEKm

The assumptions on the models are the following:

M1. For all mo, D,,, < n3 and D, = maX;,em, Dmy < nt/3

M2. There exist positive reals ¢y, ¢, such that, for all u in F,,, [|ul* <
1Dy, [ 02, and for all v in Hyp,, sup,yea, [0(2)[* < ¢2Dp, [ 02, By letting
b0 = \/P1¢9, that leads to

VE€ Sm  ltllee < P01/ Dimy Dims [I£]] (3)

where ||t]]? = [g2 t*(z, y)dzdy.
M3. Dy, < Dyy = Fpy C Fyy and Dy, < Dy = Hyy C© Hiyy

The first assumption guarantees that dim.S,, = Dy, Dy, < n2/3 < n where n
is the number of observations. The condition M2 implies a useful link between
the L? norm and the infinite norm. The third assumption ensures that, for
m and m’ in M,,, S,, + S, is included in a model (since S,, + S, C Sy
with D,y = max(Dy,,, Dy ) and Dy = max(Diy,, Dy ). We denote by S
the space with maximal dimension among the (S,;)menm,. Thus for all m in

M,, S, CS.



2.4  Eramples of models

We show here that Assumptions M1-M3 are not too restrictive. Indeed, they
are verified for the spaces F,,,, (and H,,,) spanned by the following bases (see

[9]):

e Trigonometric basis: for A = [0,1], < o, ..., ¢m,—1 > with ¢y = T,
©2;() = V2 cos(2mjz) Lo (x), poj_1(x) = V2sin(2mjz) Ly (x) for j > 1.
For this model D,,,, = m; and ¢; = 2 hold.

e Histogram basis: for A = [0, 1], < ¢1, ..., @om: > with p; = 27”1/2]1[(]»,1)/27711 g/om
for j =1,...,2™. Here D,,, =2™, ¢; = 1.

e Regular piecewise polynomial basis: for A = [0, 1], polynomials of degree
0,...,r (where r is fixed) on each interval [(I —1)/2P 1/2P[,l =1,...,2P,
In this case, my = (D,7), J,, = {j = (I,d), 1<1<2P,0<d<r},
Dy = (r+1)2P. We can put ¢; = r + 1.

e Regular wavelet basis: < Wy, 0l = —1,...,my, k € A(l) > where ¥_; ;, points
out the translates of the father wavelet and Wy, (z) = 220 (22 — k) where
U is the mother wavelet. We assume that the support of the wavelets is
included in A; and that W_; belongs to the Sobolev space Wj.

3 Estimation procedure
3.1 Definition of the contrast

To estimate the function 7w, we define the contrast
1 n
ult) = — S [ (X p)dy = 26X, i) 4)
i=1
We choose this contrast because

Bryn(t) = [t — w7 = lI=ll}

where
413 = [, (@ p)f )dady.

Therefore 7, (t) is the empirical counterpart of the ||.|| ;-distance between ¢ and
f and the minimization of this contrast comes down to minimize ||t — 7||;.
This contrast is new but is actually connected with the one used in regression
problems, as we will see in the next subsection.

We want to estimate m by minimizing this contrast on S,,. Let t(x,y) =



Sjesy Shercy, 32 ()0 ()  fanction in S, Then, if A, denotes the ma-
tTiX (@) jem ke Kms

i
vivke 200 oo q A = 2,
Datjo k,
1 - m m
Gm = EZ% (Xi)g!"(X3)
where 1 = JleIm
2= (3o X (i)
=1 je€Im,keKm

Indeed,

0Vn
7()_0<:>Za]k‘o Z% ) (Xi) Z@}”‘; D (Xip1). (5)

8a]0 ko j€Im n

We can not define a unique minimizer of the contrast 7, (), since G,, is not
necessarily invertible. For example, G, is not invertible if there exists jy in
Jm such that there is no observation in the support of ¢;, (G, has a null
column). This phenomenon happens when localized bases (as histogram bases
or piecewise polynomial bases) are used. However, the following proposition
will enable us to define an estimator:

Proposition 1

VjoVko HD_ 0w Vy  (#(Xi y))icicn = Pw ((Z Ui (Xip)Yr' (y )) )
1<i<n

where Py, denotes the orthogonal projection on W = {(t(X;,y))1<i<n, t € S}

Thus the minimization of 7, (f) leads to a unique vector (7,,,(X;, y))1<i<n de-
fined as the projection of (35, ¥x(Xit1)Vk(y)), <<, on W. The associated func-
tion 7,,(.,.) is not defined uniquely but we can choose a function #,, in S,
whose values at (X;,y) are fixed according to Proposition 1. For the sake of
simplicity, we denote

o = arg min (1)

This underlying function is more a theoretical tool and the estimator is actu-
ally the vector (7,,,(X;, y))1<i<n. This remark leads to consider the risk defined
with the empirical norm

. 1/2
= (53 [ #Coaa) ©)



This norm is the natural distance in this problem and we can notice that if ¢
is deterministic with support included in A; x R

Folltll* < Elltlls = NellF < 11 lloo 12l

and then the mean of this empirical norm is equivalent to the L? norm ||.]|.
3.2 Link with classical regression

Let us fix k in K, and let
Yir =90 (Xig1) forie{l,...,n}

to(z) = / e, )P (y)dy  for all ¢ in L2(R?).
Actually, Y;  and t; depend on m but we do not mention this for the sake of
simplicity. For the same reason, we denote in this subsection 7" by ¢ and
¢ by ;. Then, if ¢ belongs to Sy,

=> > < / 2 y)pi(x ’)@Z)k(y’)daf’dy’) () r(y)

J€EIm k€EKm
= 3 ¥ ([a)ei@)d ) pi@nm = 3 i)
k€K jE€EIm keKm

and then, by replacing this expression of ¢ in 7, (t), we obtain

Yo (t nZ/Ztk i)t (Xa) V(Y)Y (y)dy — 2Ztk (Xiv1)]
i=1

k!
1 n
:_ZZtQ D=2 (X)Yikl = =30 Y (X)) = YiaP - YA
T i1 keFKom T i=1 keFKom
Consequently
1 & 2 2
(= 2 2O =Y

We recognize, for all k, the least squares contrast, which is used in regression
problems. Here the regression function is m, = [ 7(.,y)¥x(y)dy which verifies

Yie =m(X:) +ein (7)

where

Eik = wk(Xiﬂ) - E[wk(XiJrl)‘Xi]- (8)



The estimator 7, can be written as >k, k(2)1r(y) where 7, is the classical
least squares estimator for the regression model (7) (as previously, only the
vector (7(X;))1<i<n is uniquely defined).

This regression model is used in Clémencon [7] to estimate the transition den-

sity. In the same manner, we could use here the contrast v{¥) (¢) = L 7" [ (X;11)—

t(X;)]? to take advantage of analogy with regression. This method allows to
have a good estimation of the projection of m on some S,, by estimating first
each 7, but does not provide an adaptive method. Model selection requires a
more global contrast, as described in (4).

3.8 Definition of the estimator

We have then an estimator of 7 for all S,,,. Let now
i = arg min {7, () + pen(m)}

where pen is a penalty function to be specified later. Then we can define
7 = 7 and compute the empirical mean integrated squared error E||r — 7|2
where ||.||,, is the empirical norm defined in (6).

4 Calculation of the risk

For a function h and a subspace S, let

1/2
_ ol — _ 2
A(h. ) = inf 1~ gll = inf ( [[ 10(e.) — gl Pdudy)
With an inequality of Talagrand [16], we can prove the following result.

Theorem 2 We consider a Markov chain satisfying Assumptions A1-A5 (with
v > 14 in the case of an arithmetical mizing). We consider & the estimator of
the transition density m described in Section 3 with models verifying Assump-
tions M1-M3 and the following penalty:

D,,, Dy,
pen(m) = Kol

(9)

where Ky 1s a numerical constant. Then

!

E||7nl4 — ﬁ||i < C’mier}an{dZ(ﬂ]lA, Sm) + pen(m)} + -

10



where C' = max(5|| f||oo, 6) and C" is a constant depending on ¢1, P2, ||7|| 00, fo,
[ flloos -

The constant K in the penalty is purely numerical (we can choose Ky = 45).
We observe that the term ||7||» appears in the penalty although it is unknown.
Nevertheless it can be replaced by any bound of ||7||~. Moreover, it is possible
to use ||7T|| Where 7 is some estimator of 7. This method of random penalty
(specifically with infinite norm) is successfully used in [17] and [18] for example,
and can be applied here even if it means considering 7 regular enough. This
is proved in appendix.

It is relevant to notice that the penalty term does not contain any mixing term
and is then entirely computable. It is in fact related to martingale properties
of the underlying empirical processes. The constant K is a fixed universal
numerical constant; for practical purposes, it is adjusted by simulations.

We are now interested in the rate of convergence of the risk. We consider that
7 restricted to A belongs to the anisotropic Besov space on A with regularity
o = (o1, 0). Note that if 7 belongs to B, (R?), then 7 restricted to A
belongs to Bs', (A). Let us recall the definition of B (A). Let e; and e be
the canonical basis vectors in R? and for i = 1,2, An, = 1{x € R 2,2 +
hei, ..., x +rhe; € A}. Next, for z in Aj ;, let

s

Apa) = Y17 Jate + hey

k=0

the rth difference operator with step h. For ¢ > 0, the directional moduli of
smoothness are given by

1/2
wrii(g,) = sup ( /A \A’,;ﬁig(x)ﬁdx) .

[R|<t hi
We say that g is in the Besov space Bg', (A) if

2

sup » ¢t “wy, ;(g,t) < 00
t>0 i=1

for r; integers larger than «;. The transition density 7 can thus have differ-
ent smoothness properties with respect to different directions. The procedure
described here allows an adaptation of the approximation space to each direc-
tional regularity. More precisely, if ay > «; for example, the estimator chooses
a space of dimension D,,, = Df;}l/ 2 < D,y for the second direction, where 7
is more regular. We can thus write the following corollary.

Corollary 3 We suppose that m restricted to A belongs to the anisotropic
Besow space B;:OO(A) with regularity o = (o, ) such that a; —2an+ 20100 >

11



0 and ay—2aq +2aq09 > 0. We consider the spaces described in Subsection 2.4
(with the reqularity v of the polynomials and the wavelets larger than o; — 1).
Then, under the assumptions of Theorem 2,

E|nl, — #|2 = O(n %+2).
where a is the harmonic mean of aq and as.

The harmonic mean of a; and «y is the real & such that 2/a = 1/ay + 1/as.
Note that the condition oy — 2a + 2cr1cv9 > 0 is ensured as soon as oy > 1
and the condition as — 21 + 2a790 > 0 as soon as g > 1.

Thus we obtain the rate of convergence n_%, which is optimal in the mini-
max sense (see Section 5.3 for the lower bound).

5 L2 control
5.1 Estimation procedure

Although the empirical norm is the more natural in this problem, we are
interested in a L? control of the risk. For this, the estimation procedure must
be modified. We truncate the previous estimator in the following way :

r it |7 <k
o {w if 7] < (10)

0 else

with k,, = n?/3.
5.2  Calculation of the L? risk

We obtain in this framework a result similar to Theorem 2.

Theorem 4 We consider a Markov chain satisfying Assumptions A1-A5 (with
v > 20 in the case of an arithmetical mizing). We consider ©* the estimator
of the transition density m described in Section 5.1. Then

!

~ % M C
E[7* = wlal* < C inf {d*(n1,S,)+ pen(m)} + e

where C' = max(36f5 || flloo + 2,36y ") and C' is a constant depending on
(blu ¢27 Hﬂ-”oo; ”7TH7 f07 ”f”ooufy

12



If 7 is regular, we can state the following corollary:

Corollary 5 We suppose that the restriction of w to A belongs to the aniso-
tropic Besov space B, (A) with regularity o = (au, ag) such that ay — 2a; +
219 > 0 and as — 2aq + 2aq1a0 > 0. We consider the spaces described in
Subsection 2.4 (with the regularity r of the polynomials and the wavelets larger
than c; — 1). Then, under the assumptions of Theorem 4,

E|rls — 7|2 = O(n %52).
where a is the harmonic mean of aq and as.

The same rate of convergence is then achieved with the L? norm instead of
the empirical norm. And the procedure allows to adapt automatically the
two dimensions of the projection spaces to the regularitie% a1 and as of the
transition density m. If a3 = 1 we recognize the rate n 5277 established by
Birgé [19] with metrical arguments. The optimality is proved in the following
subsection.

If oy = ay = a ("classical” Besov space), then & = « and our result is thus
an improvement of the one of Clémengon [7], whose procedure achieves only
the rate (log(n)/ n)% and allows to use only wavelets. We can observe that
in this case, the condition a; — 2an + 29 > 0 is equivalent to o > 1/2 and
so is verified if the function 7 is regular enough.

Actually, in the case oy = a9, an estimation with isotropic spaces (D,,, =
D,,,) is preferable. Indeed, in this framework, the models are nested and so
we can consider spaces with larger dimension (D?, < n instead of D2, < n?/?).
Then Corollary 3 is valid whatever av > 0. Moreover, for the arithmetic mixing,
assumption v > 6 is sufficient.

5.8  Lower bound

We denote by ||.||4 the norm in L2(A), ie. ||glla = ([4]g]2)"*. We set

B = {7 transition density on R of a positive recurrent
Markov chain such that |7 pg_(a) < L}

and [E, the expectation corresponding to the distribution of X,..., X, if the
true transition density of the Markov chain is 7 and the initial distribution is
the stationary distribution.

13



Theorem 6 There exists a positive constant C' such that, if n is large enough,

; ~ 2 -2
inf sup E,||fr, — 7|l = On~ %2
™ meB

where the infimum is taken over all estimators , of ™ based on the observa-
tions Xq,..., Xpi1.

So the lower bound in [7] is generalized for the case a; # ay. It shows that
our procedure reaches the optimal minimax rate, whatever the regularity of
7, without needing to know a.

6 Simulations

To evaluate the performance of our method, we simulate a Markov chain with
a known transition density and then we estimate this density and compare
the two functions for different values of n. The estimation procedure is easy,
we can decompose it in some steps:

find the coefficients matrix A,, for each m = (my, msy)
compute Yy, (7)) = Tr(*AnGmAy — 2" ZmA)

find 7 such that ~,(7,,) + pen(m) is minimum
compute 7,

For the first step, we use two different kinds of bases : the histogram bases
and the trigonometric bases, as described in subsection 2.4. We renormalize

these bases so that they are defined on the estimation domain A instead of

Dml Dm2
0, 1]2. For the third step, we choose pen(m) = 0.5———.

We consider three Markov chains:

e An autoregressive process defined by X,,.1 = aX,, + b+ €,.1, where the ¢,
are i.i.d. centered Gaussian random variables with variance 0. The stationary
distribution of this process is a Gaussian with mean b/(1—a) and with variance
0?/(1 — a®). The transition density is 7(z,y) = ©(y — ax — b) where ¢(z) =
1/(ov/27). exp(—2?/20?) is the density of a standard Gaussian. Here we choose
a=0.5,b= 3,0 =1 and we note this process AR(1). It is estimated on [4, 8]?.
e A discrete radial Ornstein-Uhlenbeck process, i.e. the Euclidean norm of a
vector (£1,€2,€3) whose components are i.i.d. processes satisfying, for j =
1,2,3, &), = a&) + el where €] are ii.d. standard Gaussian. This process is
studied in detail in [20]. Its transition density is

y* + a’z? a:cy)i ]

m(z,y) = Lyso exp(— 232 )]1/2( 327 32 az
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where I3, is the Bessel function with index 1/2. The stationary density of
this chain is f(z) = 1,50 exp{—2%/2p*}22%/(p*V/27) with p* = 5%2/(1 — a?).
We choose a = 0.5, f = 3 and we denote this process by v CIR since it is the
square root of a Cox-Ingersoll-Ross process. The estimation domain is [2, 10]?.
e An ARCH process defined by X,, 11 = sin(X,,) + (cos(X,,) +3)e,+1 where the
€ns1 are 1.i.d. standard Gaussian. We verify that the condition (2) is satisfied.
Here the transition density is

[y —sin(x) 1
T y) = ¢ ( ) cos(x) + 3

cos(z) + 3

and we estimate this chain on [—6, 6]°.

Fig. 1. Estimator (light surface) and true fonction (dark surface) for a /CIR process
estimated with a histogram basis, n = 1000.

We can illustrate the results by some figures. Figure 1 shows the surface z =
7(z,y) and the estimated surface z = 7(x, y). We use a histogram basis and we
see that the procedure chooses different dimensions on the abscissa and on the
ordinate since the estimator is constant on rectangles instead of squares. Figure
2 presents sections of this kind of surfaces for the AR(1) process estimated with
trigonometric bases. We can see the curves z = 7(4.6,y) versus z = 7(4.6,y)
and the curves z = 7(x,5) versus z = 7(z,5). The second section shows that
it may exist some edge effects due to the mixed control of the two directions.

For more precise results, empirical risk and L? risk are given respectively in
Table 1 and Table 2.

15



z=4.6 y=25

Fig. 2. Sections for AR(1) process estimated with a trigonometric basis, n = 1000,
dark line: true function, light line: estimator.

" 50 100 250 500 1000 | basis
law

AR(1) 0.067 | 0.055 | 0.043 | 0.038 | 0.033
0.096 | 0.081 | 0.063 | 0.054 | 0.045
VCIR 0.026 | 0.023 | 0.019 | 0.016 | 0.014
0.019 | 0.015 | 0.009 | 0.007 | 0.006

ARCH 0.031 | 0.027 | 0.016 | 0.015 | 0.014

H ZmDjH3 ZE|lH3 =

0.020 | 0.012 | 0.008 | 0.007 | 0.007

Table 1
Empirical risk E||7—7||? for simulated data with pen(m) = 0.5D,,, D, /n, averaged
over N = 200 samples. H: histogram basis, T: trigonometric basis.

150 100 | 250 | 500 | 1000 | basis
law

AR(1) 0.242 | 0.189 | 0.132 | 0.109 | 0.085
0.438 | 0.357 | 0.253 | 0.213 | 0.180
VCIR 0.152 | 0.130 | 0.094 | 0.066 | 0.054
0.152 | 0.123 | 0.072 | 0.052 | 0.046

ARCH 0.367 | 0.303 | 0.168 | 0.156 | 0.144

H ZmDj3 ZE|lH3 =

0.249 | 0.137 | 0.096 | 0.092 | 0.090

Table 2
L? risk E|l7 — 7*||? for simulated data with pen(m) = 0.5D,,, Dy, /n, averaged over
N = 200 samples. H: histogram basis, T: trigonometric basis.

We observe that the results are better when we consider the empirical norm.
It was expectable, given that this norm is adapted to the studied problem.
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50 100 250 500 1000 | basis
law

AR(1) 0.052 | 0.038 | 0.026 | 0.020 | 0.015
0.081 | 0.069 | 0.046 | 0.037 | 0.031
VCIR 0.016 | 0.014 | 0.010 | 0.006 | 0.004
0.018 | 0.012 | 0.008 | 0.006 | 0.004

H O 3 =

Table 3
L3(f(x)dxdy) risk E||r — ﬁ*\\? for simulated data with pen(m) = 0.5D,,, Dy,,/n,
averaged over N = 200 samples. H: histogram basis, T: trigonometric basis.

Actually the better norm to evaluate the distance between 7 and its estimator
is the norm ||.|| ;. Table 3 shows that the errors in this case are very satisfactory.

So the results are roughly good but we can not pretend that a basis among
the others gives better results. We can then imagine a mixed strategy, i.e. a
procedure which uses several kinds of bases and which can choose the best
basis. These techniques are successfully used in a regression framework by
Comte and Rozenholc [21], [22].

7 Proofs
7.1  Proof of Proposition 1

Equality (5) yields, by multiplying by 47" (y),

Z%koz (X )?/’ko %0 Z%O wko ’+1)T/’Z?)(y)-
J€Im i=1

Then, we sum over kg in K,,:

Z (Xzay QOJO Z Z 1/%0 i+1 wko( )(p;;(X,)
i=1

=1 k;()EKm

If we multiply this equality by o) ;" (y) and if we sum over k € K, and
Jo € Jm, We obtain

17



Z (Xiy) — Z wko i+1 wko Z Z %0 k%o DU (y) =
i=1

ko€Km k€K jo€Jm
Le. Z (X, y) — Z @/)ko i+1 @Z)ko( )Ju(Xi,y) =0
i=1 koEKm,

for all w in S,,. So the vector (t(X;,vy) — Xrex,, Vi (Xit1)V'(Y))1<i<n is or-
thogonal to each vector in W. Since t(X;,y) belongs to W, the proposition is
proved.

7.2 Proof of Theorem 2

For p a real larger than 1, let

Q,={vtesS |t <plltla}

In the case of an arithmetical mixing, since v > 14, there exists a real ¢ such
that

0< <1
“<5%

- 7
C J—
!
We set in this case ¢, = %anj In the case of a geometrical mixing, we set

¢n = |cIn(n)] where c is a real larger than 7/3~.

For the sake of simplicity, we suppose that n = 4p,,q,, with p, an integer. Let
for i = 1, ceey TL/2, Uz = (Xzi_l,Xzz‘).

Al = (U2lqn+1a--->U(21+1)qn) l :0,...,pn— 1,

B, = (U(Zl—f—l)qn—}—l, ey U(21+2)qn) [=0,...,p, — 1.

We use now the mixing assumption A5. As in Viennet [10] we can build a
sequence (Aj) such that

Let

A; and Aj have the same distribution,
Aj and A}, are independent if [ # [,
P(A # A7) < .

In the same way, we build (B;}) and we define for any [ € {0,...,p, — 1},
Al = (Uit Ubiing)s Bl = (Ulinygests - Ulyayg,) S0 that the se-
quence (U7, ..., U} ) and then the sequence (X7, ..., X) are well defined.

n

Let now V; = (Xg;, Xo;41) fori=1,...,n/2 and
Cl == (%lqn+17"'7W21+1)Qn> [ :07---7pn_ 17
Dr = (Verigest, - Viarrog,)  1=0,..pn — 1.

18



We can build (Vi ..., V7)) and then (XJ*,..., X3%,) such that

C and C}* have the same distribution,
C;* and C)* are independent if [ # I/,
P(C# CF) < Py
We put X, = X, and X7* = X;. Now let
QO ={vi X;=X;/=X"} and Q=0Q,NQ"

We denote by 7, the orthogonal projection of m on .S,,. Now,
E|# - rlall2=E (|7 - 7Lal210;) + E (|7 — 7Lal|2 10y ) (11)

To bound the first term, we observe that for all s,¢

Wn(t) = Yuls) = [t = 7ll = Is — [l — 2Z(t — 5)

1 n
where Z,(t) = = > {t(Xi,XiH) - / t(Xi,y)ﬂ(Xi,y)dy}.
i=1 R
Since [[t =7l = [[t = 7Lal7 + 7 1ac][7, we can write

Yu(t) = yu(s) = It = 7Lall} — [Is — 7all; — 224 (t — 5).
The definition of m gives, for some fixed m € M,,,
(%) + pen(ii) < () + pen(m)

And then

)
)

[ = 71AI < [ — LA+ 270 — ) + pen(im) — penii
< i — 7L + 2017 — mlly supZu(t) + pen(m) — pen(
tEBf(ﬁ’L)

where, for all m’, By(m') = {t € S,, + Sp, ||t]y = 1}. Let 0 a real larger
than 2p and p(.,.) a function such that Op(m, m’) < pen(m) + pen(m’). Then
~ 2 2 1 ~ 2
I — LAl Ly < I — FLAI + 5117 — a3, + 2pn(m)

+0 > sup  Z2(t) — p(m,m’) Lo (12)
m'eM,, tGBf(m/) n

But || — mn[[1a; < pll7 — mlli Loy < 20[17 — 7lall7 1o, + 20[7La — a7
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Then, inequality (12) becomes

- 2 2
|7 — 7210, (1 - ?'0) < (1 + ?p) [ — 71412 + 2pen(m)
103 | s 220 sl 1
m'eM,, tEBf(m/) n

6-+2 20
TSP BlrLs — ml} + 5= -pen(m)

so B (|7 - mlal21e;) <

*9?2 ) E(l sup Zi(t)—p(m,m’)] 119;;) (13)
+

20 ici,  \ LteBy(m)

We now use the following proposition:

D(m,m’)

Proposition 7 Let p(m,m') = 10||7| where D(m,m’) denotes the

dimension of S,,+ Sy . Then, under the assumptions of Theorem 2, there exists
a constant Cy such that

C
> (| s 220 - smnt)| 1o << (14)
m'eM, tEBf (m/) n n
Then, with 6 = 3p, inequalities (13) and (14) yield
- 9pC"
E (|17 — 7La|20a;) < 5] flocllm — L4l + 6pen(m) + 2= (15)
D(m,m’)

The penalty term pen(m) has to verify pen(m)-+pen(m’) > 30p||7 ||«
i.e. 30p||7||codim(Sy, + Spv) < pen(m) + pen(m’) We choose p = 3/2 and so

m2

D,
pen(m) = 45”71'HooT

To bound the second term in (11), we recall (see Section 3) that (7,5 (X;, ¥))1<i<n
is the orthogonal projection of (35, Vr(Xit1)Vr(y))1<i<n 00

W = {(t(Xi,y))i<i<n, t € S}

where 1, = 97", Thus, since Py denotes the orthogonal projection on W,
using (7)-(8)
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(70 (X, y))1<i<n = P (O n(Xig )k (y))1<i<n)
= PW((Z 73 (X3)¥r(y) 1<z<n) + Pw ( Z& KUR( ))1<z§n)

= Py (71 4(X;,9))1<i<n) + P (O €z,k1/1k (¥))1<i<n)
%

We denote by ||.||g» the Euclidean norm in R”, by X the vector (X;)i<i<, and
by e, the vector (&;)1<i<n. Thus

et~ all2 = = [ IrLA(X,0) ~ P (ra(X, ) — P (3 cutie(y))andy
k

= L [IR1a(X,9) ~ Poea(X, ) oy + [ 1P (3 st (w) oy

1 1
< [ Il ey + 5 1 einw)lady
s—zuwum/ Koy + 3 [ (5 ety
< oo+ 2 33

zlk:

But Assumption M2 implies || Yrex,, Vil < @2Dm,. So, using (8),

€ p <207 (Xig1) + 2B [ (Xi1) | X5)?
and Y 7, <2> (X)) + 2E] Zwk i+1)| Xi] < 49Dy,
k k

Thus we obtain
171 = Falls < 1 7lloo + 462Dy < |70 + 420 '/ (16)
and, by taking the expectation, E (||7T]lA - 'ﬁ'm”i]].ﬂ;;c) < (17 lloot+4gon/3) P(Q2).

We now remark that P(€25¢) = P(2*) + P(Q5 N Q). In the geometric case
Bag, < e77¢l) < 7€ and in the other case (a,, < (2¢,)77 < n ¢ Then

P(Q¢) < 4pyfaq, < '

But we have choosed ¢ such that ¢y > 7/3 and so P(2*°) < n=*/3. Now we
will use the following proposition:
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Proposition 8 Let p > 1. Then, under the assumptions of Theorem 2 or
Cs

Theorem 4, there exists Cy > 0 such that P(5 N0 Q) < —7
n

C
This proposition implies that |E (Hﬂ']lA — ﬁ‘m”i]]_ﬂ;c) < iy
n

Now we use (15) and we observe that this inequality holds for all m in M,,,

SO
on

E||7 —714]|2 < C inf 14— 7 l? —

|7 —7all2 < C inf (wla—mul]® + pen(m)) + -

with C' = max(5|| f|| 0, 6)-
7.8 Proof of Corollary 3

To control the bias term, we use the following lemma

Lemma 9 Let 4 belong to B, (A). We consider that S}, is one of the fol-
lowing spaces on A:

e a space of piecewise polynomials of degrees bounded by s; > a; —1 (i =1,2)
based on a partition with rectangles of vertices 1/D,,, and 1/D,,,,

o a linear span of {path,, A € Uy A(j), n € Ug? M (k)} where {¢} and {¢,,}
are orthonormal wavelet bases of respective regularities s; > a1 — 1 and
S9 > g — 1 (here Dy, = 2™ i=1,2),

e the space of trigonometric polynomials with degree smaller than D,,, n the
first direction and smaller than D,,, in the second direction.

Let 7, be the orthogonal projection of ma on S! . Then, there exists a positive
constant Cy such that

1/2
([lma=m.2) " < ColD + D)
A

Proof: 1t is proved in [23] for S/ a space of wavelets or polynomials and in
[24] (p. 191 and 200) for a space of trigonometric polynomials that

1/2
([ ima=muP) " < Clonsa(m, Do) + wessalm, D)

The definition of BS'  (A) implies ([, |74 — 7T,’ﬂ|2)1/2 < Co[D,* + D22, O

If we choose for S/ the set of the restrictions to A of the functions of S,

and 7,4 the restriction of 7 to A, we can apply Lemma 9. But 7/, is also the
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restriction to A of m,, so that
Hﬂ']lA — 7Tm” S C(][D;:vl + D;SQ]

According to Theorem 2

Dy, Dy,

E|7 — nl4])2 < C” inf {D;ﬁ“l + D, 202 4 =2 } .
mGMn 77,

a1

In particular, if m* is such that D,,: = Lnaﬁaz&fmlaﬂ and Dyz = [ (D)2 |
then

1+041/042 2«
~ _ m* _ 122
E||7T - 7T]1A||i S Cl/l Dm?fal + -t — O (n a1+a2+2a1a2) X
n

But the harmonic mean of a; and ay is @ = 20q0a5 /(a1 + ag). Then E||7 —
4|2 = O(n %),

The condition D,,, < n'/® allows this choice of m only if -———— < {i.e. if

a1 — 2ai + 2aq19 > 0. In the same manner, the condition as —2ai; +2aq10i9 > 0
must be verified.

7.4 Proof of Theorem 4

We use the same notations as for the proof of Theorem 2. Let us write
E||7* — 7l4]|> = By + By + Bs

B =E (Hfr* - 7T11A|!211s2;]1||fr||sm)
with ¢ By = E ([|#* — 7La|"To; a5k, )
By =E (|7 — nla|*1ay)

To bound the first term, we observe that for all m € M,,, on @, ||7 — 7, ||* <

f5 plIF = T2, Then

% - 7LalPLa; < 207 — mnlPLa; + 2l — 714]1°
< 265 pllF = Tl20y + 2l — T4l
< 265 p{2lF — TLal2La; + 27 — LAIZ} + 2 — 7L

Thus

By <E (|7 - 71al’To;) < 4f5"oE (|17 — 71a|2T0; )+(4f5 " ol flloet2)lrom—mT 4]
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But, using (15), we obtain

_ - 1201
By < (245 pll fllo + 2)[mm — 7l all* + 245 ppen(m) + 364 1/)2?-

Since p = 3/2, by setting C' = max(36 ;|| flloo + 1,36 f51),

81771C
. Jo C1

By < C{||mm — 7lall* + pen(m)} -

for all m € M,,.
Next, the definition of 7* and the Markov inequality provide

E([|7|*Tq;)

T (17)

B, <E <H7T]lA|’2]1Q;]l||fr||>kn) < |=l?

But [|#]21a; < pfi 1712 < 20/ (IF — 7Lall2 + [724]2). Now we use (16)
to state
17017 10; <2pf5 " (Illoo + 4an'/? + [l L4 ]12)
_ 1 &
<2003 (Il + 462 4+ 3wl [ (X )y
i=1
<2pf5  (2]|]loo + 4pan'?).

Then, since k,, = n?/3, (17) becomes

BQ S ”ﬂ'

2pf5  2l|7 ]l + 4¢an'/?) _ [7lloo | 200
2220 o <dpfo lI7I” |+ =)
Lastly

By < E (2(|7| + |7 Lal?)Laye ) < 2062 + [|7]12) P(2).

We now remark that P(€25¢) = P(2*) + P(Q N Q). In the geometric case
Bag, < el < ¢ and in the other case By, < (2¢,)"Y < n~7¢. Then

P() < 4pnfag, <077,
: : : . 10
But, if v > 20 in the arithmetic case, we can choose ¢ such that ¢y > 3 and
so P(2*¢) < n~ /3. Then, using Proposition 8,

1+C _ 2(Co+ DA+ [I7*)
n’/3 - n '

By <2(n*® +|I7|?)
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7.5  Proof of Theorem 6

Let 1 be a very regular wavelet with compact support. For J = (j1, j») € Z*
to be chosen below and K = (ki, ko) € Z?, we set

Yo (w,y) = 202200 — ko )p(272y — ke).

Let mo(z,y) = colg(y) with B a compact set such that A C B x B and |B|
2|A|Y2/L, and ¢y = |B|7!. So 7 is a transition density with 7ol B2 (a)
L/2. Now we set R; the maximal subset of Z? such that

IN IV

Supp(,@z)JK) - A \V/K - RJ, Supp(@/)JK) N Supp(@/)JK/) = @ lf K 7& K,.

The cardinal of Ry is |R;| = ¢2/1772 with ¢ a positive constant which depends
only on A and the support of 1. Let, for all € = (ex) € {—1, 1},

1
n KeRy

7Te:7T0+7 Z ExViK.

Let us denote by G the set of all such 7.. Since [ = 0 and 7 is a transition
density, for all z in R, [ 7.(x,y)dy = 1. Additionally m.(x,y) = mo(z,y) > 0 if
(z,y) ¢ A, and if (2,5y) € A: m. > co — 201192)/2||3p||2_ /+/n and then 7. (z,y) >

co/2 > 0 as soon as
9J1+72 1/2 co
< . 18
() <mim .
Thus, if (18) holds, m.(z,y) > (¢o/2)1p(y) for all z,y. It implies that the
underlying Markov chain is Doeblin recurrent and then positive recurrent. We

verify that f = ¢yl is the stationary density. To prove that 7. € B, we still
have to compute ||7.[|pe_ (). Hochmuth [23] proves that for ¢ smooth enough

| X rer, exturllbg () < (2719 4 272°2) | Y er, €k |la- Since

| Y extuxla= 3 lexl? = 2,

KeRjy KeR;

then ‘ '
L 2]1041 + 2]2042
I7ellBg () < 5 + ==

<5 7

From now on, we suppose that Condition C is verified where

/2901 +i)/2,

(27101 4 97202901 +72)/2 L

Condition C: NG < SEVER

It entails in particular that (18) holds if j; and j, are great enough.Then for
all ¢, m. € B. We now use the Lemma 10.2 p.160 in Hérdle et al. [25]. The
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likelihood ratio can be written

" (Xi, Xi1)
A K 19 i+ )
) = 00N

Note that 7. (X;, Xi11) > 0 P,.- and Py, - almost surely (actually the chain
“lives” on B). Then

2 5K¢JK<X27X1+1>>
log(Apn (e, o log|1——
g( Z & ( \/ﬁ 7T€<Xza XHI)

We set Uk (Xi, Xiv1) = —ex i (Xi, Xit1)/me(Xi, Xit1) so that

2
log(Ay (7e, , Zlog<1+\/ﬁUJK(Xi>Xi+l)>
—an o 2u (Xi, Xit1) +iU (X;, X; )—EUQ (Xi, Xit1)
_i:1 \/ﬁ JK iy <Ni4+1 \/ﬁ JK iy <di4+1 n JIK iy <Ai41
= Up + Uy — Wy

2
with € the function defined by 6(u) = log(1 4+ u) — u + % Now we prove the

three following assertions
1° Er, (Jun|) = B, (|20 0 (ZUsk(Xi, Xii1))|) = 0

2
% E, (wn) = Ey. (— U3K<X@-,Xi+1>) <4
n

4
5 B (02) = B, (51 S U X)) <

1° : First we observe that

) 2(j1+j2)/2”ch2>o 9(j1+72)/2

‘ \/_ - \/ﬁ 00/2 \/ﬁ
— 0 since Condition C holds. So there exists some integer n, such

n
that Vn > no, V,y, 02Uk (z,y)/v/n)| < [2U;k(,y)/+/n|*. But

9(i1+72)

and

2U ke, y)[’ 8 11 [bux(,y)?
// ‘T‘ f(yme(e,y)dedy = ——= [ S G (@)dudy

8 20tH2 [y co 32w, 20\
< 0 2d d < 0 )

392 2 /9(j1+i2) 1/2
Then By jus] < 32 2115 ( ) 0.

=  con n
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2°: We bound the expectation of U (X;, Xy 1)?:

f(x)dxdy < co/ Mdazdy < 2.

Er. (Usk(Xi, Xit1)?) = A cf2
(19)

Vi (,y)
/ e (z, yyj

And then E,_(w,) = E.. ((2/n) 20, Usk(X;, Xi11)?) < 4.
3° : We observe that E,_ (U (X;, Xi41)| X1, ..., X;) = 0and thus Y0 Ujk (X, Xit1)

is a martingale. A classic property of square integrable martingales involves

E.. zn:UJK(Xi,XiH) 2 :iEm [UJK(XZ-,XiH)Q}.
(e

i=1 i=1
Thus, using (19), Er. (v}) = (4/n) 2Ly Er, [Us(Xi, Xig1)?] < 8.

We deduce easily from the three previous assertions 1°, 2° and 3° that there
exists A > 0 and py such that P, (A, (7., ., 7.) > e *) > po. Thus, according
to Lemma 10.2 in [25],

|R;|

max Er ||, — el > 752641?0
where & = infose 7. — mola/2 = lexctbone/ Vil = /Y.
Now for all n we choose J = J(n) = (j1(n), j2(n)) such that
/2 < 9iip aFmimmm < ¢ and c/2 < 9i2y” aTm T < o

with ¢; and ¢, such that (¢ + ¢5?)/c1cz < L/(2¢'/?) so that Condition C is
satisfied. Moreover, we have

ccic agtoy ccic — 20 o
|RJ|52 > jna1+a2+2a1a2 1 > le 2na1+a2+2a1a2
Thus
-2
. ce “PoCiCy 20192
max B |7, — 7|} > ————noieaiee,
T €G 8

And then for all estimator

sup E, || 7, — 7|4 > Cn~ 5t
TeB
with C' = ce *pgcicy/8.
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7.6 Proof of Proposition 7

(t (XiaXi-i-l) - ft(Xla y)ﬂ-(XZ)y)dya
Let 7 (1) = 6(X7, Xiy) — JU(X], y)m(X7, y)dy,
ye(t) = (X X)) — J X, y)m (X, y)dy.

\_/\—/

We now define Z(t):

7 odd i even

Let us remark that Z*(t)1q- = Z,(t)1o~. Next we split each of these terms :

1 pr—1 2(204+1)gn—1 1 1 2(204+2)gn—1
Yo X T, Z,t)=- ) > T,
n 1=0 i=4lgn+1,i odd " 120 i=2(2041)gn+1,i odd
1 pn—1  2(2+1)q 1 pn—1 2(2142)qn
Zo-2% S e zo-1% Y mw
=0 i=4lqn+2,i even =0 i=2(214+1)gn+2,i even

We use the following lemma:

Lemma 10 (Talagrand [16])
Let Uy, . . L[N 1 i i.d. variables and ((;)iep a set of functions.

Let G(t Z C(Uy). We suppose that
(1) Supllétlloo < Mh (2) E(ﬁUEIG(t)I) <H, (5 iugVar[Ct(Uo)] <w
S S

Then, there exists K > 0, Ky >0, Ky > 0 such that

<K
+

_|_

E lsquQ(t) — 10H? 3

teB

2
2 NH
e %e_K2A_11‘|

Here N = p,, B = By(m/) and forl € {0,....p,—1}, U = (X3 415 Xd2141)q, )5

Gl o) = — 3t i) — [ y)m(, y)dy.
n =1, odd

Then
1Pzl 2(204+1)gn—1

— Y Y mW=4z,0)

DPn 129 9n j—41g,+1,i odd
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We now compute M;, H and v.

(1)We recall that S, + S, is included in the model S,,» with dimension
max (D, ; Dyt ) Max( Dy Dy ).

suplGlloe <suplitl— > (14 [ wlaiy)dy)
teB teB An i=1,i odd
2
< 20\ /max(Din, . Dy ) max(Dyny, Do )£ < %nw.
2
Then we set M; = %nl/?’.
0

(2) Since Ay and Af have the same distribution, ¢;(Uy) = + Zfi’ﬂlodd Li(t)

qn
has the same distribution than qin zfgq;lodd [';(t). We observe that E(T';(¢)|X;) =
0 and then for all set 1

£ ([Z rie) ) _E (Z n<t>rj<t>)

il ijel

=2E (Z E[Fz(t)Fj(t)\Xi]) + 2 E[I30)]

j<i iel

= 2E (Z rj@)E[mm) IAIHGIESBAHOI

i<t icl el

In particular

Var[(;(Up)] = E (

LS n-(@])qb > E[)]

Un i—1 i odd i=1,i odd
1 2t ) 1 )
<5 > E[P(X Xi)] < — Il
9n i=1i odd In
T
Then v = H HOO
qn

(3) Let (¢; @ ¥k)(jk)eA(m,m’) an orthonormal basis of (Sy, + Sp, ||| f)-

29



E(sup|G*(t)]) < > _E(G*(¢; ® )

teB F
pn—1 2(20+1)gn—1 2
< Z > > L7 (95 ® )
.k Pads 1=0 i=4lgn+1,i odd
16721 2(20+1)gn—1 2
<> 5> E > T @)
ik =0 i=4lgn+1,i odd

where we used the independence of the A;. Now we can replace I'} by I'; in the
sum because A; and A; have the same distribution and we use as previously
the martingale property of the I';.

6pn*1 2(214+1)gn—1
E(sup|G*())) <> — D E Y. TLig; @)
7.k 1=0 1=4lgn+1,i odd

16P~— 1 2(2l41)gn—1

<>X=5Y Y E(TN@ew)

7.k =0 i=4lgn+1,i odd

4 D(m,m’)
<Y Arlleell®s @ il < dlirfloe———
ik n n

D(m,m’) D(m,m').

Then E2(sup|G(t)]) < 4]7lw and H? = 4[|
teB

According to Lemma 10, there exists K’ > 0, K; > 0, K} > 0 such that

<K’[l

e KaDmm') | n—4/3q72Le—Kénl/6\/D(m,m’)/qn .
n
+

E[ sup (477 ,)%(t) — 10H”

tEBf(m’)

But ¢, < n¢ with ¢ < %. So

/!
> E [ sup  Z27(t) — p(m, m’) >]
m/eEMnp +

tGBf(m') 4
/
S 5 Z G_KlD(m’ml) +n26_1/3|Mn|6_Kén1/6_c S A_ (20)
n m’GMn "

In the same way, >, caq, E l sup Z*2(t) — p(m, m/)/4] < A, /n for r =
teBy(m!) n
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2,3,4. And then

) E([ aup Zi(t)—p<m,m'>]+nm)

m'EMy, teBy(m’)

= > E([ sup Zf(t)—p(m,m')h]lm> <

m'eM, tEBf (m/)
7.7 Proof of Proposition 8

First we observe that

PN < P (i‘;%; ()] > 1 1/p)

where v, (t) = %i/[t(){;‘,y) —E(t(X],y))ldy and B={t €S |t||;=1}.

But, if t(z,y) = ;5 a5 (®)1k(y), then

vn(t?) =D ajraj ki (0j05)

3i' k
where

() = S Tu(X0) ~ B(X)], (1)

1
Let b, = (Zkaik)l/z, then |v,(1*)| < 32, bby|n(psey)| and, if t € B,
Zj b? = Zj 2k aik = ||t||2 < fo_l-

Thus
sup v, ()] < fo! sup D> bibilvn(wie00)]-
tesB Zb?:l gl

Lemma 11 Let B;; = ||¢jpilleo and Vi = ||@jeill2. Let, for any symmetric
matriz (Aj;)

p(A) = sup Y la;ulAj,
Yoai=1 41

and L(p) = max{p*(V), p(B)}. Then, if M2 is satisfied, L(p) < ¢1D?.

This lemma is proved in Baraud et al. [26].

Loty = DU/ A (V¥ |n(ps0| < 4 [ Bjaw + Viay/2lIfllo] }
 A0[ fllseLle) SR .

n
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sup ()] <475 sup byt By + Vi 2l et
€ bi=1 ji

<4fyt B+ (V)2 fllca

fol=1/p)p(B) | 2 (F(V))"
={=1/p) [ 017~ Lip) V5 (L(@)

(-1 |5+ ] <01

1
Then P (sup v, ()] > 1 — —) < P(A°). But v, (u) = 20, 1(u) 4 20, 2(u) with
p

teB
1 pn_l
Uny(u) = — > Vi, (u) r=1,2
Prn 15
2(21 1 n * *
Yii(u) = —254;;%;1[ (X7) — E(u(X))],
with
2(21 2 n * *
Yis(u) = —zf;lfnw[ (X7) — E(u(X)))].

To bound P(7,1(;01) > Bjiw + Vjin/2| fllex), we will use the Bernstein
inequality given in Birgé and Massart [27]. That is why we bound E|Y}; (u)|™:

E[Y;:(u)[™ < E@HUHw)W% > [ulX)) - E(u(X]))]
n i=4lgn+1
, 1 2(20+1)gn 2
< 2llulloe)™ 5B D [u(Xe) — E(u(Xy)]
B |izdign+1
, 1 2(20+1)gn 2
< @llulloo)™ " 7 5E > [ulX1) = E(u(Xy))]
An  |i=2ign+1

since X = X; on " and the X, have the same distribution than X;. Thus

E[Yi1(w)[™ < Q2llulle)™ *Elu(X1) — E(u(X))[* < (2Hu!\oo)m’2/u2(x)f(x)dx
<27 ((lulloo)™ (1 f ool el (22)

With u = @0, E[Y1(@i00)]™ < 2772(B; ;)™ *(\/ | fllsVj,57)?. And then

P(|7nr(os0)| = Bz + Vi 20| loot) < 267777,
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Given that P(Q50Q*) < P(A®) = X5, P ([7a(0j00)] > 4(Bjaz + Viy/2l| fllo) ).

P(Q5 N Q) <4D: exp {_pnfg(l _ 1//))2}

A0[[ flloo L
i —1/p)* m }
160 fllos  anL() )

<4n*3 exp {—

But L(p) < ¢, D2 < $1n?? and ¢, < n'/% so

_fsd-1/p 1/6} . 0
= /3

160] Tt (23)

P(Q;NQY) < 4n?/ exp {
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Appendix : random penalty

Here we prove that Theorem 2 is valid with a penalty which does not depend
on {|7]|sc.

Theorem 12 We consider the following penalty :

=~ PmiDm
pen(m) = T ] o2

where K is a numerical constant and & = 7, with Sy, a space of trigono-
metric polynomaials such that

Inn < Dpys = Dipys < nt/S,

If the restriction of w to A belongs to B(al’a2)(A) with a; > 3/2 and ay >

2,00

max(mc:l_g, 25‘1{1), then, under assumptions of Theorem 2, for n large enough,
D,,,D,, c’
E|rls— 7|2 < C inf {d?(mlA, ) + 7} + 2

Remark 13 The condition on the regularity of m s verified for example if
a1 > 2 and ag > 2. If o = as = «, it is equivalent to o > 2.
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Proof:  'We recall that ||7||o, denotes actually ||714]|~ and we introduce the

following set:
1
A= — .
{ “3f

As previously, we decompose the space:
El|f—nlal} =E (|7 — 7lal2Tagon) +E (|7 = 7Lal2Doz0ne )+E (|7 — 7Lal|2T0y)

17 |0

-1
17T aloo

We have already dealt with the third term. For the first term, we can proceed
as in the proof of Theorem 2 as soon as

Op(m,m’) < pen(m) + pen(m’)
with 6 = 3p = 9/2 and p(m, m’') = 10||7||D(m, m')/n. But on A, |||, <

2||7||o and so

D(m,m’) D(m,m')

Op(m,m’) = 1007« < 20070

Dm Dm Dm/ Dm/
< 200||7 floo = 4 200| [ oo——
n n
It is sufficient to set K, = 206.
Now, inequality (16) gives

E (714 = 7ml20agnae) < (7o + 4g2n'/?) P25 N A).

It remains to prove that P(€25 N A) < Cn~*/3 for some constant C.

P01 A%) = P(#e — 7Ll > [7le/2) < P17 = 7hallodn > 7]/
< P = T lr; 2 [7llof4) + P — Taoe > [/ 4)
R T || oo
<p (nw = gy > — ) P = 7lalls > [7]l/4)

4¢0 Dml*Dmg*

since || — Tmslloo < @0\/ Drmsy Dy [|T —

Furthermore the inequality 7, (7) < 7,(m,.) leads to
A 2 2 Lo 2 / 2
17 = 7Ll < l7me = 7Lally + M7 = Tonell7 +6° sup  Z(2)

0 te By (m)

and then, on €,
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2
I = el (1= 22) < Apllmne — w142 + 208 sup Z2(0)

tEBf(m*)
400’ -1 202 -1
o = T < G — 7L + 5@S?7”
- - ter Mk
<12pfy Aol T — 7LallZ +18p° g sup  Z3(t)
tEBf(m*)

with 6 = 3p and by remarking that for ¢ with support A, ||¢||2 < |As]||t]|%.
Thus

2
1
P(QENAY) <P 21 > Wl
A= P 201 2 BagniF 57

7113 1
T 32¢3DM1*DW2* 12pf0 |A2‘
+ P(mme = mlalloc = [I7lloc/4)

< P( sup Z,%(t)]lﬂ* > “ )+ P(Dyys Do || e — 7T]lA||2 > b)

+ P(| e — mlall3

)

teB; (mx) = nl/3
Tr [o.¢]
P — 74 = 1T02)
(24)
S L SR
3205 1802 f ! 3205 12pfy ' Al

We will first study the two last terms in (24). Since the restriction 74 of
7 belongs to B(o‘1 ®2)(A), the imbedding theorem proved in Nikolski [24]
p.236 implies that 74 belongs to BY1%)(A) with 8 = oy(1 — 1/&) and
fBs = ag(l — 1/a). Then the approximation lemma 9 (which is still valid
for the trigonometric polynomial spaces with the infinite norm instead of the
L? norm) yields to

|7 — Tlalloe < C(D ~h 4 D- ﬁQ)

mi* mo*

And then, since D, = Diyss

Dm1*Dm2*||7Tm* - 7T]lA||c2>o < C,(DQ 26 + D2 252)

mi*

<C'((Inn)* 27 + (Inn)?>=%%2) = 0

2—2ﬁ1<0<:>2061062—3042—041>0
—2ﬁ2<0(:)2a1a2—30z1—a2>0

ensured when «; > 3/2 and ap > max(5=

Indeed

and this double condition is

3o
2a1 37 2a1—1

). Consequently, for n large
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enough,

17l

P(Dipya Dy | T = 7L a5 2 0) + P me = 7o 2 7

) =0,

We will now prove that

a C
P 22O o > — | < —
(e 02 7)<

and then using (24), we will have P(Q; N A°) < Cn~*/3. We remark that, if
(95 @ Pr)jk is a base of (Sp, [I-]7),

sup Z3(1) < Y Z2(p; © )
ter(m*) ]k

and we recall that, on Q*, Z,(t) = S0y Z .(t) (see the proof of Proposition
7). So we are interested in

*2 a

Let * = Bn~%? with B such that 2f;?B? + 4||7||B < a/4 (for example
B =inf(1,a/8(fy* + 2||7|/s)). Then

a
T 4Dy, Dypyun/3

(V207 lloo + / Dings Dy fo 1) <

So we will now bound P(Z;; | (0; @) Lo > \/2H7r|]00x+ \/Dml*DmQ*fglx) by
using the Bernstein inequality given in [27]. That is why we bound E| ﬁ fqﬁ_fodd rre)m
for all integer m > 2,

2 —1 2

1 ! * m (2||t||00qn)m72 * * * *
El - > T <=0 =B | Y X X)) — [ UK p)r (X y)dy]
An i—1 odd (4gx) i=1,i odd
e\ 1] 2 i
< SE|Y D [H(XG, Xin) —/t(Xzay)W(Xi’y)dy]
2 16¢; |- oaa

Illo0) ™ 2

<|— t5(

< ( 5 16/ (2, y)drdy
1 m—2 2

< Gz tlloe)™ oo 121l

Then
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1 2qn—1

m 1 —1ym—
4— Z Fz*((p] & ,lvz)k)| S 2m+2( Dml*Dm2*f0 1) 2||7T||C>O'
4n =17 odd

Thus the Bernstein inequality gives

P(1Z; (05 ® Yi)| = \/ Diys Dingfy '@ + /2] [ |o0) < 26777

Hence

But 2n?/3 exp{— 1

P( sup Z2 ()10 > 7)< 2D Doy exp{—puBn ")
tEBf(m*) n

Bn'/3
<2n?/3 ——
<207 exp{— -

1.

Bnl/3

an

} < Cn=*/3 since ¢, < n'/% and so

4
P( up Zﬁ<t>nmzi)g c

tEBj(mx) nl/3 n/3
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