Cycles of free words in several independent random permutations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Cycles of free words in several independent random permutations

Résumé

In this text, extending results of A.Nica and M. Neagu, we study the asymptotics of the number of cycles of a given length of a word in several independent random permutations with restricted cycle lengths. Specifically, for $A_1$,..., $A_k$ non empty sets of positive integers and for $w$ word in the letters $g_1,g_1^{-1}$,..., $g_k,g_k^{-1}$, we consider, for all $n$ such that it is possible, an independent family $s_1(n)$,..., $s_k(n)$ of random permutations chosen uniformly among the permutations of $n$ objects which have all their cycle lengths in respectively $A_1$,..., $A_k$, and for $l$ positive integer, we are going to give asymptotics (as $n$ goes to infinity) on the number $N_l(n)$ of cycles of length $l$ of the permutation obtained by changing any letter $g_i$ in $w$ by $s_i(n)$. In many cases, we prove that the distribution of $N_l(n)$ converges to a Poisson law with parameter $1/l$ and that the family of random variables $(N_1(n), N_2(n),...)$ is asymptotically independent. We notice the pretty surprising fact that from this point of view, many things happen like if we considered the number of cycles of given lengths of a single permutation with uniform distribution on the $n$-th symmetric group.
Fichier principal
Vignette du fichier
free.words.in.permutations.RSAA.10.06.pdf (352.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00114382 , version 1 (16-11-2006)
hal-00114382 , version 2 (02-07-2007)
hal-00114382 , version 3 (12-12-2007)
hal-00114382 , version 4 (17-12-2007)
hal-00114382 , version 5 (15-12-2008)
hal-00114382 , version 6 (16-01-2009)
hal-00114382 , version 7 (01-11-2010)

Identifiants

Citer

Florent Benaych-Georges. Cycles of free words in several independent random permutations. 2006. ⟨hal-00114382v1⟩
345 Consultations
296 Téléchargements

Altmetric

Partager

More