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CYCLES OF FREE WORDS IN SEVERAL INDEPENDENT RANDOM

PERMUTATIONS

FLORENT BENAYCH-GEORGES

Abstract. In this text, extending results of [Ni94] and [Ne05], we study the asymptotics of
the number of cycles of a given length of a word in several independent random permutations
with restricted cycle lengths. Specifically, for A1,. . . , Ak non empty sets of positive integers
and for w word in the letters g1, g

−1

1 , . . . , gk, g−1

k , we consider, for all n such that it is possible,
an independent family s1(n), . . . , sk(n) of random permutations chosen uniformly among the
permutations of n objects which have all their cycle lengths in respectively A1, . . . , Ak, and for l
positive integer, we are going to give asymptotics (as n goes to infinity) on the number Nl(n) of
cycles of length l of the permutation obtained by changing any letter gi in w by si(n). In many
cases, we prove that the distribution of Nl(n) converges to a Poisson law with parameter 1/l and
that the family of random variables (N1(n), N2(n), ...) is asymptotically independent. We notice
the pretty surprising fact that from this point of view, many things happen like if we considered
the number of cycles of given lengths of a single permutation with uniform distribution on the
n-th symmetric group.
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1. Introduction

1.1. General introduction. In all this text, we shall consider a random element σn (whose
distribution will be specified) of the group Sn of the permutations of {1, . . . , n} and study the
law of the family random variables (Nl(σn))l≥1, where for all l ≥ 1, Nl(σn) is the number of
cycles of length l in the decomposition of σn as a product of cycles with disjoint supports. It is
well known (see, e.g., theorem 1.3 of [ABT05]), that if for all n, σn is uniformly distributed on
Sn, then for all l ≥ 1, the joint distribution of the random vector

(N1(σn), . . . , Nl(σn))

converges weakly, as n goes to infinity, to

Poiss(1/1) ⊗ Poiss(1/2) ⊗ · · · ⊗ Poiss(1/l),

where for all positive number λ, Poiss(λ) denotes the Poisson distribution with mean λ. In this
paper, we are going to prove that this result (or part of it) stays true for random permutations
σn with other distributions.

1.2. Single random permutation with restricted cycle lengths. We define, for A non

empty set of positive integers, S
(A)
n to be the set of permutations of Sn with all cycle lengths

in A. It is easy to see that for n large enough, S
(A)
n is non empty if and only if n is divided by

the greatest common divisor of A.

1.2.1. Case where A is infinite. We first prove, in section 3.3.1, that if for all n such that

S
(A)
n is non empty, σn is uniformly distributed on S

(A)
n , then under the additional hypothesis

that
∑

j≥1
j /∈A

1

j
< ∞, from the previously mentioned result about the case where σn is uniformly

distributed on Sn, it remains that for all l ≥ 1, the distribution of the random vector

(Nk(σn))1≤k≤l,k∈A
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converges weakly, as n goes to infinity in such a way that S
(A)
n is non empty, to

⊗
1≤k≤l,k∈A

Poiss(1/k).

Note that since for all k /∈ A, Nk(σn) = 0, this result is the strongest one could keep from the
previous one for such a random permutation.

1.2.2. Case where A is finite. Note also that the result exposed in section 1.2.1 implies that
even for large values of n, every Nl(σn) stays finite. Hence if A is finite, no such result can
be expected. Specifically, denoting maxA by d, we prove in section 3.4 that for all l ∈ A,
Nl(σn)/nl/d converges in every Lp to 1/l.

1.3. Word in random permutations with restricted cycle lengths.

1.3.1. Exposition of the problem. In a second time, we shall fix k ≥ 1, consider A1,. . . , Ak non
empty sets of positive integers (non of them being {1}), each of them being either finite or

satisfying
∑

j≥1
j /∈A

1

j
<∞, w a word in the letters g1, g

−1
1 , . . . , gk, g−1

k , and, for all n such that S
(A1)
n ,

. . . , S
(Ak)
n are all non empty, an independent family s1(n), . . . , sk(n) of random permutations

chosen uniformly in respectively S
(A1)
n , . . . , S

(Ak)
n . We are going to give asymptotics (as n goes

to infinity) on the random variables Nl(σn) when σn is the permutation obtained by changing
any letter gi in w by si(n).

1.3.2. Role played by a quotient of the free group generated by g1, . . . , gk. Note first that the

result exposed just above in section 1.2.2, about random permutations of S
(A)
n in the case

where A is finite (with maximum d), states that in such random permutations, the cycles with
length equal to d will be predominant: the cardinality of the subset of {1, . . . , n} covered by
the support of such a random permutation will be equivalent to n. Hence its d-th power will
be closed to one. Heuristically, one can say that for large n, this random permutation is not

faraway from having order d. This is what has led us to introduce the group Fk/[g
d1

1 , . . . , gdk
k ]

generated by free elements g1, . . . , gk and quotiented by the relations gdi
i = 1 for i ∈ [k], with

di = supAi (when di = +∞, the relation gdi
i = 1 counts for nothing). Any word in the

letters g1, g
−1
1 , . . . , gk, g

−1
k represents an element of this group. It is natural to expect that the

distribution of the permutation σn obtained by changing any letter gi in w by si(n) will depend
especially, as n goes to infinity, on the element of this group represented by w. More specifically,
since the functions Nl are constant on any conjugation class of the symmetric group, we are
going to consider the conjugation class of the element of this group represented by w.

1.3.3. Existence of cycles of most lengths. The most general result we are going to prove about
words in random permutations with restricted cycle length, theorem 5.1, is the following one. In

the case where the element of Fk/[g
d1

1 , . . . , gdk
k ] represented by w is not conjugated to an element

represented by a word of the type gα
i (i ∈ [k], α integer), for all l ≥ 1,

lim inf
n→∞

E(Nl(σn)) ≥
1

l
.

It means that the cycles of the letters of w are going to mix in a hieratic enough way to give
birth to cycles of any length, at least as much as in a uniform random permutation, even when
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the letters of w have very restricted cycle lengths. In the other case, we also have stronger lower
bounds for this expectation, but not for any l.

1.3.4. Weak limit of the distributions of the Nl(σn). Then, we are going to prove more precise
results: under certain hypothesis on w and on the Ai’s, for all l ≥ 1, the joint distribution of
the random vector

(N1(n), . . . , Nl(n))

converges weakly, as n goes to infinity, to

Poiss(1/1) ⊗ Poiss(1/2) ⊗ · · · ⊗ Poiss(1/l),

just like if the distribution of σn would have been uniform on Sn. Our hypothesis, for obtaining
such a conclusion, are either (theorem 5.3) that all Ai’s are infinite and that w is not a power
of another word (note that this hypothesis on w, which is formulated in a slightly more precise
way in the article, is not a real restriction, since the cycle lengths of a power of a permutation
only depend on the cycle lengths of the permutation itself) , or (theorem 5.4) that w = g1 · · · gk

(with the exception of the case k = 2 and A1∪A2 ⊂ {1, 2}, which means that our results do not
apply to the product of two random involutions).

This results extend in one hand a result of A. Nica, who proved in [Ni94] that in the case
where all Ai’s are equal to the set of all positive integer and where w is not a power of another
word, for all l ≥ 1, the distribution of Nl(σn) converges weakly to Poiss(1/l), and on the other
hand a result of M. Neagu, who proved in [Ne05] that the matrices of independent random
permutations with restricted cycle length are asymptotically free. Here, we shall mention that
much of the methods we use in this paper are inspired by the ones invented in both of this
papers, and that we use many of their results.

1.4. Comments on this results and open questions. Note first that all the random permu-
tations σn we consider have a distribution which is invariant by conjugation. Hence their distri-
butions are completely determined by the distribution of the random vector (N1(σn), . . . , Nn(σn)).
In our results, we fix l ≥ 1 and study (N1(σn), . . . , Nl(σn)) as n goes to infinity.

If σn is the permutation obtained by changing any letter gi in a word w by si(n), then under
the pretty general hypothesis exposed in the section 1.3.4, we obtain an asymptotic distribution
which is the same as the one we would have obtained if σn would have been uniform on Sn:

Poiss(1/1) ⊗ Poiss(1/2) ⊗ · · · ⊗ Poiss(1/l).

It leads to the question of the distance between the distribution of a word in independent random
permutations and the uniform distribution: what are the functionals f of a permutation such
that f(σn) is asymptotically distributed as if σn would have been uniformly distributed on Sn

?

Another pretty interesting question arising from the similarity between σn and a uniform
random permutation on Sn is the following one: do we have a characterization of the words w
in the letters g1, g

−1
1 , . . . , gk, g−1

k such that for n large enough, the random permutation obtained
by replacing any letter gi of the word w by si(n), with s1(n), . . . , sk(n) independent family of
uniform random permutations in Sn, is uniformly distributed ? This question has an analogue
in any compact group, and it would also be interesting to compare the words convenient for
different groups. One can find some sufficient conditions, like the fact that for some i ∈ [k],
gi appears only once in w and g−1

i doesn’t appear, or, the (more general) fact that there is a
sequence of words w = w0, w1, . . . , wp such that wp is a single letter and for all i ∈ [p], wi a
simple reduction of wi−1, where we call a simple reduction of a word w any word w′ such that
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there exists a, b ∈ {g1, g
−1
1 , . . . , gk, g−1

k } which are distinct and not inverse one of each other
such that in w, the letter a (resp. a−1) always appears followed by b (resp. preceded by b−1)
and w′ is the word obtained from w by replacing ab (resp. b−1a−1) everywhere it appears by
a (resp. a−1). As an example, g1g2g2g3g1g2g

−1
1 is a direct reduction of g1g3g2g2g3g1g3g2g

−1
3 g−1

1
for a = g1, b = g3. The author, despite the active and friendly help of Thierry Lévy, did not
manage to prove that this condition is, or is not, necessary.

In theorem 2.5, we give a general sufficient condition on certain sequences σn of random
permutations to have the weak convergence of the distribution of (N1(σn), . . . , Nn(σn)) to
Poiss(1/1) ⊗ Poiss(1/2) ⊗ · · · ⊗ Poiss(1/l) as n goes to infinity. It would be interesting to know
if this condition is sufficient. For more details, see remark 2.6.

Of course, the question of extension the results exposed in section 1.3.4 to some more general
words when the Ai’s are not all infinite is a natural continuation of this paper. For more details
about it, we refer to remark 4.18.

There is a last open question the author would like to point at: do we have a dilation of the
random variables of Nl(σn)/nl/d − 1/l of section 1.2.2 (which converge to zero) which has a non
degenerate weak limit as n goes to infinity ?

1.5. Notation. In this text, for N integer, we shall denote {1, . . . , N} by [N ].

2. A general result about cycles of random permutations

2.1. Technical preliminaries about boolean polynomials. This section is devoted to the
proof of corollary 2.3, that we did not find in the literature. Let us first introduce the terminology
of [B01]. A boolean polynomial f(X1, . . . ,XN ) in the indeterminate sets X1, . . . ,XN is a formula
of the type

f(X1, . . . ,XN ) = (∩∈IXi) ∩
(
∩j∈JXc

j

)
,

where I, J are disjoint subsets of [N ] and where for all j, Xc
j designs the complementary set of

Xj . It is said to be complete if J is the complementary set of I. A disjoint sum of complete
boolean polynomials is a formula of the type

f(X1, . . . ,XN ) = ∪L
i=1fi(X1, . . . ,XN ),

where L ≥ 1 and the fi’s are pairwise distinct complete boolean polynomials.

Remark 2.1. Using the classical distributivity rules, it is easy to see that any boolean polynomial
can be put under the form of a disjoint sum of complete boolean polynomials.

The following theorem can be found in section 1.4 of [B01], but for the convenience of the
reader, we give its proof.

Theorem 2.2. Fix n ≥ 1, λ1, . . . , λn ∈ R, f1, . . . , fn boolean polynomials in the indeterminate
sets X1, . . . ,XN . Then in order to have

n∑

k=1

λkP (fk(A1, . . . , AN )) ≥ 0 (resp. = 0)

for all family A1, . . . , AN of events in a probability space (Ω,Σ, P ), it suffices to prove it under
the additional hypothesis that each of the Ai’s is either ∅ or Ω.
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Proof. We only prove the result for ≥ and the other one follows. Using remark 2.1, we can
suppose that there exists a family (CI)I⊂[N ] of real numbers indexed by the set of subsets of [N ]
such that for all family A1, . . . , AN of events in a probability space (Ω,Σ, P ),

n∑

k=1

λkP (fk(A1, . . . , AN )) =
∑

I⊂[N ]

CIP
[
(∩i∈IXi) ∩

(
∩j∈IcXc

j

)]
.

It suffices to prove that for all I0 ⊂ [N ], CI0 ≥ 0. It follows from the equation

∑

I⊂[N ]

CIP
[
(∩inIXi) ∩

(
∩j∈IcXc

j

)]
=

n∑

k=1

λkP (fk(A1, . . . , AN )) ≥ 0

where we chose every Ai to be either Ω or ∅ according to i ∈ I0 or not. �

We shall use the following corollary to prove theorem 2.5.

Corollary 2.3. Consider a probability space (Ω,Σ, P ), q ≥ 1, and for all i = 1, . . . , q, (Ai,j)j∈Ii

a finite family of events. Let us define, for i = 1, . . . , q and ω ∈ Ω,

Ci(ω) = |{j ∈ Ii ; ω ∈ Ai,j}|.

Let us also define, for k = (k1, . . . , kq) ∈ N
q\{0},

Sk =
∑

J1⊂I1
|J1|=k1

· · ·
∑

Jq⊂Iq

|Jq|=kq

P (∩q
l=1 ∩j∈Jl

Ai,j)

and S0 = 1. Then for all r = (r1, . . . , rq) ∈ N
q,

(1) P (C = r) =

|I1|∑

k1=r1

· · ·

|Iq|∑

kq=rq

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq).

Moreover ”alternating inequalities” are satisfied in the following way : for all m ≥ 0 odd (resp.
even),

(2) P (C = r) ≥
∑

k1=r1,...,|I1|

...
kq=rq,...,|Iq|

k1−r1+···+kq−rq≤m

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq) (resp. ≤).

Proof. First note that the alternating inequalities, used for m large enough, imply (1). So we
are only going to prove the alternating inequalities.

Then, let us suppose that for all i = 1, . . . , q, Ii = [ni], with ni ≥ 1. As an application of the
previous theorem, one can suppose every Ai,j to be either ∅ or Ω. In this case, for all i = 1, . . . , q,
the random variable Ci is constant, equal to the number ci of j’s such that Ai,j = Ω, and for all
k = (k1, . . . , kq) ∈ N

q,

Sk =

(
c1

k1

)

· · ·

(
cq

kq

)

.
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Hence for (r1, . . . , rq) = (c1, . . . , cq), for all m ≥ 0,

∑

k1=r1,...,n1

...
kq=rq,...,nq

k1−r1+···+kq−rq≤m

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq)

=
∑

k1=c1,...,n1

...
kq=cq,...,nq

k1−r1+···+kq−rq≤m

(−1)k1−r1+···+kq−rq

(
k1

c1

)

· · ·

(
kq

cq

)(
c1

k1

)

· · ·

(
cq

kq

)

,

which is equal to 1, i.e. to P (C = r).

Now consider (r1, . . . , rq) 6= (c1, . . . , cq). Then P (C = r) = 0 and we have to prove that the
right-hand-side term in equation (2) is either non negative or non positive according to m is
even or odd. For all m ≥ 0,

∑

k1=r1,...,n1

...
kq=rq,...,nq

k1−r1+···+kq−rq≤m

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq)

=
∑

k1=r1,...,n1

...
kq=rq,...,nq

k1−r1+···+kq−rq≤m

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)(
c1

k1

)

· · ·

(
cq

kq

)

=
∑

k1=r1,...,c1
...

kq=rq,...,cq

k1−r1+···+kq−rq≤m

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)(
c1

k1

)

· · ·

(
cq

kq

)

.

If there exists i such that ri > ci, then the previous sum is zero. In the other case, since for all
0 ≤ r ≤ k ≤ c,

(k
r

)(c
k

)
=
(c
r

)(c−r
l

)
for l = k − r, the previous sum is equal to

(
c1

r1

)

· · ·

(
cq

rq

)
∑

l1=0,...,c1−r1

...
lq=0,...,cq−rq

l1+···+lq≤m

(−1)l1+···+lq

(
c1 − r1

l1

)

· · ·

(
cq − rq

lq

)

.

So we have to prove that for all d = (d1, . . . , dq) ∈ N
q\{0} and for all m ∈ N,

Z(m,d) := (−1)m
∑

l1=0,...,d1

...
lq=0,...,dq

l1+···+lq≤m

(−1)l1+···+lq

(
d1

l1

)

· · ·

(
dq

lq

)

is non negative. Let us prove it by induction over d1 + · · ·+ dq ≥ 1.
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If d1 + · · · + dq = 1, then

Z(m,d) =

{

1 if m = 0,

0 if m > 0,

so the result holds.

Suppose the result to be proved to the rank d1 + · · · + dq − 1 ≥ 1. First note that if m = 0,
then Z(m,d) = 1, so the result holds. So let us suppose that m ≥ 1. Since d1 + · · · + dq ≥ 2,

there exists i0 such that di0 6= 0. One can suppose that i0 = q. Using
(dq

lq

)
=
(dq−1

lq

)
+
(dq−1

lq−1

)
,

one has

Z(m,d) = (−1)m
∑

l1=0,...,d1

...
lq=0,...,dq

l1+···+lq≤m

(−1)l1+···+lq

(
d1

l1

)

· · ·

(
dq−1

lq−1

)[(
dq − 1

lq

)

+

(
dq − 1

lq − 1

)]

= (−1)m
∑

l1=0,...,d1

...
lq−1=0,...,dq−1

lq=0,...,dq−1
l1+···+lq≤m

(−1)l1+···+lq

(
d1

l1

)

· · ·

(
dq−1

lq−1

)(
dq − 1

lq

)

+(−1)m−1
∑

l1=0,...,d1

...
lq−1=0,...,dq−1

lq=0,...,dq−1
l1+···+lq≤m−1

(−1)l1+···+lq

(
d1

l1

)

· · ·

(
dq−1

lq−1

)(
dq − 1

lq

)

= Z(m, (d1, . . . , dq−1, dq − 1)) + Z(m− 1, (d1, . . . , dq−1, dq − 1)) ≥ 0,

which closes the proof of the induction, and of the corollary. �

Remark 2.4. We use the same notations as in the previous corollary. One can easily prove,
using theorem 2.2, that for all r = (r1, . . . , rq) ∈ N

q, one has

(3) S(r1,...,rq) =

|I1|∑

k1=r1

· · ·

|Iq|∑

kq=rq

(
k1

r1

)

· · ·

(
kq

rq

)

P (C1 = k1, . . . , Cq = kq).

2.2. Number of cycles of a given length of random permutations. The main theorem
of section 2 is the following one. We shall use it in the following of the paper. Recall that we

have defined, for A set of positive integers and n ≥ 1, S
(A)
n to be the set of permutations of Sn

with all cycle lengths in A.

Theorem 2.5. Let A be a set of positive integers and let, for each n in a certain infinite set
of positive integers, σn be a random element of Sn such that the law of σn is invariant under
conjugation by any element of Sn. Let, for all l ≥ 1, Nl(σn) denote the number of cycles of

length l of σn. Suppose that for all p ≥ 1, for all σ ∈ S
(A)
p , the probability of the event

{∀m = 1, . . . , p, σn(m) = σ(m)}

is equivalent to n−p as n goes to infinity. Then for all finite subset K of A, the law of

(Nl(σn))l∈K
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converges, as n goes to infinity, to

⊗
l∈K

Poiss(1/l).

Remark 2.6. It would be interesting to know if the inverse implication is true, at least when A
is the set of all positive integers: with the same hypothesis of invariance of the distribution of σn

under conjugation, let us suppose that for all q ≥ 1, the law of (N1(σn), . . . , Nq(σn)) converges,
as n goes to infinity, to ⊗

1≤l≤q
Poiss(1/l). Is that true that for all p ≥ 1, for all σ ∈ Sp, the

probability of the event

{∀m = 1, . . . , p, σn(m) = σ(m)}

is equivalent to n−p as n goes to infinity ? The main difficulty, to prove it, is the fact that no
alternating inequality seems to hold in (3).

Proof. Before the beginning of the proof, let us introduce a few notations. Let, for all n and
for all c ∈ Sn cycle, Ec(n) be the event ”c appears in the cycle decomposition of σn”. Let, for
all l, n ≥ 1, Cl(n) be the set of cycles of Sn with length l.

Step I. In order to prove the theorem, we fix a positive integer q, a subset {l1 < · · · < lq} of
A, a family of non negative integers (r1, . . . , rq), and we prove that the probability of the event

{∀i = 1, . . . , q,Nli(σn) = ri}

converges, as n goes to infinity, to

(4)
∏

1≤i≤q

e−1/li
(1/li)

ri

ri!
.

With the notations introduced above, we have to prove that the probability of the event

(5) {∀i = 1, . . . , q, exactly ri of the events of the family (Ec(n))c∈Cli
(n) occur}

converges, as n goes to infinity, to (4).

By (1), for all n, the probability of the event of (5) is

(6)
∑

k1=r1,...,|Cl1
(n)|

· · ·
∑

kq=rq,...,|Clq (n)|

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq)(n),

where we have defined S0(n) = 1 and for all k = (k1, . . . , kq) ∈ N
q\{0},

(7) Sk(n) :=
∑

P ( ∩
i∈[q]

∩
c∈Ji

Ec(n)),

the sum being taken on all families (Ji)i∈[q] such that for all i, Ji ⊂ Cli(n) and |Ji| = ki.

Step II. Let us first fix k = (k1, . . . , kq) ∈ N
q\{0}. We shall compute lim

n→∞
Sk(n). Define

p = k1 · l1 + · · ·+ kq · lq and consider σ ∈ Sp such that the decomposition in cycles of σ contains
k1 cycles of length l1, k2 cycles of length l2, . . . , kq cycles of length lq. Then the invariance by
conjugation of the law of σn allows us to claim that Sk(n) is equal to the probability of the event

{∀m = 1, . . . , p, σn(m) = σ(m)}

times the number of subsets J of Sn which consist exactly in k1 cycles of length l1, k2 cycles
of length l2, . . . , kq cycles of length lq such that this cycles are pairwise disjoint. Such a subset
J is defined by a set of pairwise disjoint subsets of [n] in which there are exactly k1 subsets of
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cardinality l1, k2 subsets of cardinality l2, . . . , kq subsets of cardinality lq, and by the choice of
a cycle build in every of this subsets. Hence there are exactly

n!

(n− p)!l1!k1 l2!k2 · · · lq!kq

1

k1!k2! · · · kq!
︸ ︷︷ ︸

counting the sets of pairwise disjoint subsets of [n]

(l1 − 1)!k1(l2 − 1)!k2(l3 − 1)!k3 · · · (lq − 1)!kq

︸ ︷︷ ︸

choice of the cycles

such subsets J . So

Sk(n) =
n!

(n − p)!lk1

1 lk2

2 · · · l
kq
q

1

k1!k2! · · · kq!
P ({∀i = 1, . . . , p, σn(i) = σ(i)}).

Hence by hypothesis,

lim
n→∞

Sk(n) =
1

lk1

1 lk2

2 · · · l
kq
q

1

k1!k2! · · · kq!
.

We denote this limit by S(k1,...,kq).

Step III. Now, let us prove that the probability of the event of (5) converges to

(8)
∑

k1≥r1

...
kq≥rq

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq),

which is equal to

(9)
∑

k1≥r1

...
kq≥rq

(−1)k1−r1+···+kq−rq
1

(k1 − r1)!r1!
· · ·

1

(kq − rq)!rq!

1

lk1

1 lk2

2 · · · l
kq
q

,

(this shows that the series converges).

Fix ε > 0. Choose m0 ≥ 0 such that for all m ≥ m0, the absolute value of

∑

k1≥r1

...
kq≥rq

k1−r1+···+kq−rq>m

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq),

is less than ε/2.

By (2) for all m,m′ ≥ m0 such that m is odd and m′ is even, the probability of the event of
(5) is minored by

∑

k1=r1,...,|C1(n)|

...
kq=rq,...,|Cq(n)|

k1−r1+···+kq−rq≤m

(−1)r1+k1+···+rq+kq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq)(n)
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and majored by

∑

k1=r1,...,|C1(n)|

...
kq=rq,...,|Cq(n)|

k1−r1+···+kq−rq≤m′

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq)(n).

Hence for n large enough, the probability of the event of (5) is minored by

−ε/2 +
∑

k1≥r1

...
kq≥rq

k1−r1+···+kq−rq≤m

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq)

and majored by

ε/2 +
∑

k1≥r1

...
kq≥rq

k1−r1+···+kq−rq≤m′

(−1)k1−r1+···+kq−rq

(
k1

r1

)

· · ·

(
kq

rq

)

S(k1,...,kq),

hence is ε-closed to the sum of (8).

Step IV. Now, let us write again the limit of the probability of the event of (5). By the
previous step and by (9), it is equal to

1

r1! · · · rq!

1

lr1

1 · · · l
rq
q

∑

t1≥0
...

tq≥0

(−1)t1+···+tq 1

t1!
· · ·

1

tq!

1

lt11 · · · l
tq
q

,

i.e. to the expected limit of (4). It closes the proof of the theorem. �

3. Number of cycles of a given length of random permutations with restricted

cycle lengths

3.1. Graph theoretic basic definitions. In this text, we shall consider oriented, edge-colored
graphs with color set [k]: these are families G = (V ;E1, . . . , Ek), where V is a finite set (its
elements are called the vertices of G) and for all r ∈ [k], Er is a subset of V 2 (the set of edges
with color r of G). For e = (u, v) edge of G, u (resp. v) is called the beginning vertex of e (resp.
the ending vertex of e) and is denoted by Beg(e) (resp. End(e)). e is often denoted by u → v.
Note that the Er’s are not supposed to be pairwise disjoint, hence for u, v ∈ V there can be
several edges (with pairwise distinct colors) beginning at u and ending at v. When the Er’s are
pairwise disjoint, as it will be the case for the graphs G(σ,w) that we shall introduce the section
4.2.2, one can define the graph by giving the set of vertices, the set of edges, and the color of
every edge.

An oriented graph is an oriented, edge-colored graph where all edges have the same color.

A loop is an oriented graph of the type ({v1, . . . , vl}, {v1 → v2 → · · · → vl → v1}), with
v1, . . . , vl pairwise distinct. We define its length to be l.
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A string is an oriented graph of the type ({v1, . . . , vl}, {v1 → v2 → · · · → vl}), with v1, . . . , vl

pairwise distinct. We define its length to be l − 1.

A graph is said to be connected if for every two distinct vertices a, b, there exists a positive
integer n and vertices a = a0, a1, . . . , an = b such that for every i ∈ [n], there is an edge (of any
color and either direction) between ai−1 and ai.

A connected component of a graph (V ;E1, . . . , Ek) is a maximal subgraph (i.e. graph of the
type (V ′;E′

1, . . . , E
′
k) with V ′ ⊂ V , E′

1 ⊂ E1, . . . , E′
k ⊂ Ek) which is connected.

We define, for G oriented, edge-colored with color set [k] graph, for r ∈ [k], G[r] to be the
graph obtained from G by erasing all edges which color is not r and all vertices which are not
the beginning or the end of an edge of color r. A string (resp. a loop) with color r of G is a
connected component of G[r] which is a string (resp. a loop).

A graph is said to be 2-regular if for all vertex v,

|Beg−1({v})| + |End−1({v})| = 2.

3.2. A preliminary result. We fix a non empty set A of positive integers, different from {1}.

Recall that for n large enough, S
(A)
n is non empty if and only if n is divided by the greatest

common divisor of A.

Let us consider Γ an oriented graph which is a union of

- loops with lengths in A,
- strings with lengths < supA,

such that the union is disjoint, i.e. that non vertex of Γ belongs in the same time to two different
loops, to two different strings or to a loop and a string.

Let us also consider γ an injective function from the vertex set of Γ to [n], and let p
(A)
n (Γ) be

the probability that a random permutation s with uniform distribution on S
(A)
n satisfies

∀e edge of Γ, s(γ(End(e))) = γ(Beg(e)).

Let us first note that this probability does not depend on the choice of γ. Indeed, let γ′ be
another injective function from the vertex set of Γ to [n]. Let Bγ (resp. Bγ′) be the set of s’s in

S
(A)
n that satisfy

∀e edge of Γ, s(γ(End(e))) = γ(Beg(e)) (resp. s(γ′(End(e))) = γ′(Beg(e))).

Since γ and γ′ are both injective, there exists τ ∈ Sn such that γ′ = τ ◦ γ. Then one has

∀s ∈ S
(A)
n , s ∈ Bγ ⇐⇒ τsτ−1 ∈ Bγ′ ,

from which it follows that the probability of the previously mentioned event does not depend

on the choice of γ, since the uniform distribution on S
(A)
n is invariant under conjugation.

The following result is proved in [Ne05].



CYCLES OF FREE WORDS IN RANDOM PERMATUTIONS 13

Theorem 3.1. Suppose that A is either finite or satisfies
∑

j≥1
j /∈A

1

j
<∞. Then as n goes to infinity

in such a way that S
(A)
n 6= ∅,

(10) p(A)
n (Γ) ∼ n







−|{edges of Γ}|+

∑

L loop of Γ

length of L

d







,

where d = supA and with the convention l/∞ = 0 for all l ≥ 1.

3.3. Cycles of a random permutation of S
(A)
n .

3.3.1. Case where A is infinite. As an application of theorem 3.1 and of theorem 2.5, we are
going to prove the following result:

Proposition 3.2. Suppose that A is an infinite set of positive integers such that
∑

j≥1
j /∈A

1

j
< ∞.

We consider, for all n such that S
(A)
n is non empty, a random permutation σn which has uniform

distribution on S
(A)
n . Then for all l ≥ 1, the distribution of the random vector

(Nk(σn))1≤k≤l,k∈A

converges weakly, as n goes to infinity in such a way that S
(A)
n is non empty, to

⊗
1≤k≤l,k∈A

Poiss(1/k).

Note that for all k /∈ A, Nk(σn) = 0.

Note also that this result implies that even for large values of n, every Nl(σn) stays finite.

Proof. By theorem 2.5, it suffices to prove that for p ≥ 1, for σ ∈ S
(A)
p , the probability of the

event

{∀m = 1, . . . , p, σn(m) = σ(m)}

is equivalent to n−p as n goes to infinity, which is a direct application of theorem 3.1 for
Γ = ([p], {i→ σ(i) ; i ∈ [p]}). �

3.4. Case where A is finite. We are going to prove the following result:

Theorem 3.3. Suppose that A is a finite set of positive integers, and denote its maximum by

d. We consider, for all n such that S
(A)
n is non empty, a random permutation σn which has

uniform distribution on S
(A)
n . Then for all l ∈ A, as n goes to infinity in such a way that S

(A)
n

is non empty, Nl(σn)

nl/d converges in all Lp’s (p ∈ [1,+∞)) to 1/l.

Note that it implies that for all l ∈ A, the distribution of Nl(σn)

nl/d converges weakly to the Dirac

mass at 1/l. Since constant ransom variables are always independent, this result also contains

the asymptotic independence of the family
(

Nl(σn)

nl/d

)

l∈A
.

To prove this theorem, we shall need the following lemmas. The first one is well known (see,
for instance, Theorem 3.53 of [B04]). The second one appears in [Ne05].
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Lemma 3.4. Let p be the greatest common divisor of A. Then for |z| < 1,

∑

n≥0

∣
∣
∣S

(A)
pn

∣
∣
∣

(pn)!
zpn = exp

(
∑

k∈A

zk

k

)

.

Lemma 3.5. Let B be a finite set of positive integers. Let (cj)j∈B be a finite family of positive

numbers. Let
∑

n≥1

bnwn be the power expansion around zero of exp
(
∑

j∈B cjw
j
)

. Suppose that

bn > 0 for sufficiently large n. Then as n goes to infinity,

bn−1

bn
∼

(
n

bcb

)1/b

,

with b = maxB.

Proof of the theorem. First note that by Hölder formula, it suffices to prove that for all p
positive integer, the expectation of the 2p-th power of

Nl(σn)

nl/d
−

1

l

tends to zero as n goes to infinity. Hence by the binomial identity, it suffices to prove that for
all l ∈ A, for all m ≥ 1, the expectation of the m-th power of Nl(σn) is equivalent to l−mnml/d

as n goes to infinity in such a way that S
(A)
n is non empty.

So let us fix l ∈ A and m ≥ 1. We know that

Nl(σn) =
1

l

n∑

k=1

1{k belongs to a cycle of length l}.

Hence

E[Nl(σn)m] =
1

lm

∑

m1,...,mn≥0
m1+···+mn=m

(
m

m1, . . . ,mn

)

E

[
n∏

k=1

(1{k belongs to a cycle of length l})
mk

]

But the distribution of σn is invariant by conjugation, so for all m1, . . . ,mn ≥ 0,

E

[
n∏

k=1

(1{k belongs to a cycle of length l})
mk

]

depends only on the number j of k’s such that mk 6= 0. So

E[Nl(σn)m] =
1

lm

m∑

j=1

∑

m1,...,mn≥0
|{k∈[n] ; mk 6=0}|=j

m1+···+mn=m

(
m

m1, . . . ,mn

)

P (1, . . . , j belong to cycles of length l)

i.e.
(11)

E[Nl(σn)m] =
1

lm

m∑

j=1







(
n

j

)

P (1, . . . , j belong to cycles of length l)
∑

m1,...,mj≥1
m1+...+mj=m

(
m

m1, . . . ,mj

)







.
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Now, let us compute, for j ≥ 1, an equivalent of P (1, . . . , j belong to cycles of length l) . Let
us denote by P(j) the set of partitions of [j]. We have

P (1, . . . , j belong to cycles of length l)

=
∑

π∈P(j)

P (1, . . . , j are in cycles of length l

and ∀i, i′ ∈ [j], [i, i′ belong to the same cycle] ⇔ [i = i′ mod π])

=
∑

π∈P(j)
π={V1,...,V|π|}

(
n− j

l − |V1|, . . . , l − |V|π||, n− l|π|

)

((l − 1)!)|π|

∣
∣
∣S

(A)
n−l|π|

∣
∣
∣

∣
∣
∣S

(A)
n

∣
∣
∣

=
∑

π∈P(j)

1

n(n− 1) · · · (n− j + 1)

∣
∣
∣S

(A)
n−l|π|

∣
∣
∣ /(n− l|π|)!

∣
∣
∣S

(A)
n

∣
∣
∣ /n!

∏

V ∈π

(l − 1)!

(l − |V |)!
.

Let p be the greatest common divisor of A. We know that for all positive integer n,

S
(A)
n 6= ∅ =⇒ p|n,

and that for sufficiently large n, the inverse implication is also true. Hence by lemma 3.4, for
|z| < 1, one has

∑

n≥0

∣
∣
∣S

(A)
pn

∣
∣
∣

(pn)!
(zp)n = exp






∑

j∈ 1

p
.A

(zp)j

pj




 .

Hence for |w| < 1, one has

∑

n≥0

∣
∣
∣S

(A)
pn

∣
∣
∣

(pn)!
wn = exp






∑

j∈ 1

p
.A

wj

pj




 .

So by lemma 3.5, as n goes to infinity,
∣
∣
∣S

(A)
pn−p

∣
∣
∣ /(pn− p)!

∣
∣
∣S

(A)
pn

∣
∣
∣ /(pn)!

∼

(
n

(d/p)1/d

)p/d

= (pn)p/d .

Hence by induction on k positive integer divided by p, one can easily prove that, as n goes to
infinity in such a way that p divides n,

∣
∣
∣S

(A)
n−k

∣
∣
∣ /(n − k)!

∣
∣
∣S

(A)
n

∣
∣
∣ /(n)!

∼ nk/d.

Hence

(12) P (1, . . . , j belong to cycles of length l) ∼
1

nj

∑

π∈P(j)

nl|π|/d
∏

V ∈π

(l − 1)!

(l − |V |)!
∼ n(l/d−1)j .

Mixing equations (11) and (12), one gets
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E[Nl(σn)m] ∼
1

lm

m∑

j=1







nlj/d

j!

∑

m1,...,mj≥1
m1+···+mj=m

(
m

m1, . . . ,mj

)






∼

nlm/d

lm
.

�

4. Combinatorial preliminaries to the study of words in random permutations

4.1. Words and groups generated by relations.

4.1.1. Words. Let, for k ≥ 1, Mk be the set of words in the letters g1, g
−1
1 , . . . , gk, g

−1
k , i.e. the

set of sequences gα1

i1
· · · gαn

in
, with n ≥ 0, i1, . . . , in ∈ [k], α1, . . . , αn = ±1. A word w ∈ Mk is

said to be reduced if in its writing, no letter is followed by its inverse. It is said to be cyclically
reduced if moreover, the first and the last letter are not the inverses one of each other. It is easy
to prove that for all w ∈Mk reduced, there is v ∈Mk cyclically reduced, m ≥ 0, i1, . . . , im ∈ [k],
α1, . . . , αm ∈ {1,−1} such that

w = gα1

i1
· · · gαm

im
vg−αm

im
· · · g−α1

i1
.

A cyclically reduced word is said to be primitive if it is not the concatenation of d ≥ 2 times the
same word. It can be proved that any cyclically reduced word is a power of a primitive word.

For w = gα1

i1
· · · g

α|w|

i|w|
∈ Mk and s = (s1, . . . , sk) family of elements of a group, w(s) denotes

sα1

i1
· · · s

α|w|

i|w|
.

4.1.2. The quotient of the free group with k generators by the relations gd1

1 = 1, . . . , gdk
k = 1.

Let Fk be the free group generated by g1, . . . , gk. It is the set of reduced words of Mk endowed
with the operation of concatenation-reduction via the relations gig

−1
i = 1, g−1

i gi = 1, i ∈ [k]. For
w,w0 ∈ Mk with w0 reduced, w is said to represent or to be a writing of the element w0 of Fk

if one can reduce w to w0 via the previous relations.

Consider d1, . . . , dk ∈ {2, 3, 4, . . .} ∪ {∞}. Let Fk/[gd1

1 , . . . , gdk
k ] be the group Fk quotiented

by its normal subgroup generated by the set {gdi
i ; i ∈ [k], di < ∞}. For w ∈ Mk, w is said to

represent or to be a writing of a class C ∈ Fk/[g
d1

1 , . . . , gdk
k ] if it is a writing of an element of C.

Theorem 1.4 of section 1.4 of [MKS66] states the following facts.

Theorem 4.1. (a) Any element of Fk/[g
d1

1 , . . . , gdk
k ] has a writing of the type gα1

i1
· · · gαn

in
with

i1 6= i2 6= · · · 6= in ∈ [k], α1, . . . , αn integer numbers such that 0 < |α1| < di1 ,. . . , 0 < |αn| < din ,
and this writing is unique up to replacements of the type

g
αj

ij
→







g
dij

+αj

ij
if αj < 0 and dij <∞,

g
−dij

+αj

ij
if αj > 0 and dij <∞,

with j ∈ [n].

(b) In any conjugation class of Fk/[g
d1

1 , . . . , gdk
k ], there is an element represented by a word of

the previous type such that moreover, in 6= i1, and such a word is unique up to replacements of
the previous type and to transformations of the type gα1

i1
· · · gαn

in
→ gαn

in
gα1

i1
· · · g

αn−1

in−1
.
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For (b), the existence (but not the uniqueness) will be proved again in lemma 4.3.

Let us define the (d1 . . . , dk)-cyclically reduced words to be the words of the type gα1

i1
· · · gαn

in
with n ≥ 0, i1 6= i2 6= · · · 6= in 6= i1 ∈ [k], α1, . . . , αn integers such that 0 < |α1| < di1 ,. . . ,
0 < |αn| < din . For w ∈ Mk, the set of (d1 . . . , dk)-cyclically reduced words which represent

elements of the class of conjugation of the element of Fk/[g
d1

1 , . . . , gdk
k ] represented by w are

called the (d1 . . . , dk)-cyclic reductions of w. In general, there are more than one (d1 . . . , dk)-
cyclic reductions of w.

Remark 4.2. 1. Note that since in any group, if two elements are conjugated, then all their
powers are, for all l ≥ 1, the (d1 . . . , dk)-cyclic reductions of wl are the (d1 . . . , dk)-cyclic reduc-
tions of the l-th power of any (d1 . . . , dk)-cyclic reduction of w.
2. Note also that the l-th power of a (d1 . . . , dk)-cyclically reduced word is (d1 . . . , dk)-cyclically
reduced whenever the word is not of the type gα

i , with i ∈ [k], α 6= 0 such that di ≥ l|α|.

The following lemma gives a concrete way, from a word w ∈ Mk, to achieve one of its
(d1 . . . , dk)-cyclic reductions.

A non empty word w ∈ Mk is said admit a reduction w′ on the right if there exists w′ ∈ Mk

and r ∈ [k] such that w is one of the following words

w′grg
−1
r , w′g−1

r gr, w
′gdr

r , w′g−dr
r .

The cyclic permutation of a non empty word w = gε1

i1
· · · gεm

im
with n ≥ 1, i1, . . . , im ∈ [k],

ε1, . . . , εm ∈ {−1, 1}, is defined to be c(w) := gεm
im

gε1

i1
· · · g

εm−1

im−1
.

Lemma 4.3. Consider w ∈ Mk. Then there exists a unique n ≥ 0, a unique sequence w0 =
w,w1, . . . , wn ∈Mk such that

(i) w1, . . . , wn−1 are not (d1 . . . , dk)-cyclically reduced,
(ii) wn is (d1 . . . , dk)-cyclically reduced,
(iii) for all i ∈ [n], wi is the reduction on the right of wi−1 if wi−1 admits one, and its cyclic

permutation in the other case.

Note that wn is one of the (d1 . . . , dk)-cyclic reductions of w. We shall call it its canonical
right (d1, . . . , dk)-cyclic reduction.

Proof. We have an obvious notion of length for the elements of Mk. The lemma can easily be
proved by induction on the length |w| of w.

For |w| = 0, the result is obvious.

Suppose that w is non empty and that the result is proved for all words of length < |w|.
- If there is p ≥ 0 such that the p-th cyclic permutation cp(w) admits a reduction on the right,
then let p0 be the smallest such integer and define wi = ci(w) for i = 0, . . . , p0 and wp0+1 to be
the reduction on the right of cp0(w). Then the induction hypothesis allows to conclude.
- If there is no p ≥ 0 such that cp(w) admits a reduction on the right, then there is p ≥ 0
such that cp(w) is (d1 . . . , dk)-cyclically reduced. Let n be the smallest such integer. Then n,
w0 = c0(w), . . . , wn = cn(w) are convenient. �

4.2. Colored graphs associated to words and permutations. Congruences.
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4.2.1. Partitions, graphs and congruences. Recall that a partition ∆ of a set X is a set of
pairwise disjoint, non empty subsets of X which union is X. Since ∆ is a set, |∆| denotes the
its cardinality, i.e. the number of classes of ∆.

For any function γ defined on a set X, we shall denote by Part(γ) the partition of X by the
level sets of γ.

In the section 3.1, we introduced the notion of oriented, edge-colored with color set [k] graph.
Let us fix such a graph G, with vertices set V .

G is said to be admissible if two different edges with the same color cannot have the same
beginning of the same end.

We call a congruence of G a partition ∆ of V such that the beginnings of two edges with the
same color are in the same class of ∆ if and only if the ends are in the same class of ∆.

We are also going to use the notion of quotient graph, that we define now. Let us define, for
∆ partition of V , G/∆ to be the oriented edge-colored (with color-set [k]) graph whose vertices
are the classes of ∆ and such that for all C,C ′ classes of ∆, for all r ∈ [k], there is an edge with
color r from C to C ′ in G/∆ when there is an edge with color r in G from a vertex of C to a
vertex of C ′.

Remark 4.4. Note that ∆ is a congruence of G if and only if G/∆ is admissible.

4.2.2. The graph G(σ,w). Fix k, p ≥ 1, σ ∈ Sp and w = gα1

i1
· · · g

α|w|

i|w|
∈Mk a non empty word. In

[Ni94], Nica defined G(σ,w) (denoted by Hσ−1⋆w in his paper) to be the directed, edge-colored
with color set [k], 2-regular graph with vertex set V := [p]× [|w|] and edge set

E := {a1, . . . , ap}
︸ ︷︷ ︸

pairwise distinct elements which could
have been replaced by 1, . . . , p, but which are

called ai’s in order to avoid confusions

× [|w|],

where the color of any edge (am, l) is il, and the beginning and the end of any edge (am, l) are
given by :

Beg(am, l) =







(m, l) if αl = 1

(m, l + 1) if l 6= |w|, αl = −1

(σ−1(m), 1) if l = |w|, αl = −1

End(am, l) =







(m, l + 1) if l 6= |w|, αl = 1

(σ−1(m), 1) if l = |w|, αl = 1

(m, l) if αl = −1

In the case where p = 1 and σ = Id, we shall denote G(σ,w) by G(w) and identify its vertex
set and its edge set with [|w|] by (1, l) ≃ l and (a1, l) ≃ l for all l ∈ [|w|]. We will also use the
convention that if w is the empty word, then G(σ,w) is the empty graph.

Remark 4.5. Note that this graph is admissible if and only if w is cyclically reduced.

A graph (V ;E1, . . . , Ek) is said to be the disjoint union of the graphs (V ′;E′
1, . . . , E

′
k) and

(V ′′;E′′
1 , . . . , E′′

k ) if V = V ′ ∪ V ′′, E1 = E′
1 ∪ E′′

1 , . . . , Ek = E′
k ∪ E′′

k and all this unions are
disjoint.



CYCLES OF FREE WORDS IN RANDOM PERMATUTIONS 19

An isomorphism between two oriented, edge-colored graphs (V ;E1, . . . , Ek), (V ′;E′
1, . . . , E

′
k)

is a bijection ϕ : V → V ′ such that for all u, v ∈ V , for all r ∈ [k], one has

u→ v ∈ Er ⇐⇒ ϕ(u)→ ϕ(v) ∈ E′
r.

The following lemma is going to give us a way to understand the graphs of the type G(σ,w) by
reducing them to disjoint unions of graphs isomorphic to graphs of the type G(w).

Lemma 4.6. G(σ,w) is the disjoint union of N1(σ) graphs isomorphic to G(w1), N2(σ) graphs
isomorphic to G(w2), . . . , Np(σ) graphs isomorphic to G(wp).

Proof. If I, J are disjoint subsets of [p] stable by σ, then in G(σ,w), there is no edge
between elements of I× [|w|] and J× [|w|]. Hence G(σ,w) is the disjoint union of the graphs
(V (c), E1(c), . . . , Ek(c)), where c varies in the set of cycles of the cycle-decomposition of σ,
and where for all such cycle c, with support C ⊂ [p], V (c) = C× [|w|] and for all i ∈ [k],
Ei(c) = Ei ∩ (V (c)2).

Hence it suffices to prove that for all d ∈ [p], for all cycle c = (m1 m2 · · ·md) of σ of length d,
there is an isomorphism between (V (c), E1(c), . . . , Ek(c)) and G(wd). The function which maps
(mi, l) ∈ {m1,m2, . . . ,md}×[|w|] to (d− i)|w| + l ∈ [d|w|] is such an isomorphism. �

As an example, when w = g1g2g
−1
1 g−1

2 , p = 3 and σ is the cycle (123), G(σ,w) is the graph

(1, 1)
1
→

(a1,1)
(1, 2)

2
→

(a1,2)
(1, 3)

1
←

(a1,3)
(1, 4)

2
←

(a1,4)

(3, 1)
1
→

(a3,1)
(3, 2)

2
→

(a3,2)
(3, 3)

1
←

(a3,3)
(3, 4)

2
←

(a3,4)

(2, 1)
1
→

(a2,1)
(2, 2)

2
→

(a2,2)
(2, 3)

1
←

(a2,3)
(2, 4)

2
←

(a2,4)
(1, 1),

where the name and the color of every edge are written respectively below and above the edge,
and where one has to read in a cyclic way (i.e. the last vertex of the last line is the same one as
the first vertex of the first line).

When w is still g1g2g
−1
1 g−1

2 , but p = 5 and σ is the product of disjoint cycles (123)(45),
G(σ,w) is the disjoint union of the previous graph and of

(4, 1)
1
→

(a4,1)
(4, 2)

2
→

(a4,2)
(4, 3)

1
←

(a4,3)
(4, 4)

2
←

(a4,4)

(5, 1)
1
→

(a5,1)
(5, 2)

2
→

(a5,2)
(5, 3)

1
←

(a5,3)
(5, 4)

2
←

(a5,4)
(4, 1).

4.2.3. A result of Nica we are going to use. In [Ni94], Nica proved the following theorem, in-
volving quotients of the graph G(σ,w) by congruences.

Theorem 4.7. Consider w ∈Mk cyclically reduced. Then for all congruence ∆ of G(σ,w), the
number of classes of ∆ is less or equal than the number of edges of G(σ,w)/∆. Moreover, if
w is primitive, then the singletons partition is the only congruence ∆ of G(σ,w) such that the
number of classes of ∆ is equal than the number of edges of G(σ,w)/∆ and for all m 6= m′ ∈ [p],
m 6= m′ mod ∆.
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4.2.4. Admissible graphs with restricted loop and string lengths. Let us fix A1, . . . , Ak non empty
(finite or infinite) sets of positive integers, non of them being {1}. Let us denote supA1, . . . , supAk

by respectively d1, . . . , dk.

If an oriented, edge-colored graph G with color set [k] is admissible and r ∈ [k], it is easy to
see, since two different edges of G[r] cannot have the same beginning or the same end, that G[r] is
a disjoint union of strings and of loops (see section 3.1 for the definitions of strings and loops). If
for each r ∈ [k], all this strings have length < supAr and all this cycles have length in Ar (resp.
length equal to dr), G will be said to be (A1, . . . , Ak)-admissible (resp. (d1, . . . , dk)-strongly
admissible). Note that the empty graph is (d1, . . . , dk)-strongly admissible. A congruence ∆
of an oriented, edge-colored graph G will be said to be an (A1, . . . , Ak)-congruence (resp. an
(d1, . . . , dk)-strong congruence) if G/∆ is (A1, . . . , Ak)-admissible (resp. (d1, . . . , dk)-strongly
admissible).

We define the Neagu characteristic of an admissible graph G to be

χ(G) = |{vertices of G}| −
k∑

r=1

|{edges of G with color r}|+
k∑

r=1

∑

L loop of G
with color r

length of L

dr
,

with the convention l/∞ = 0 and that the Neagu characteristic of the empty graph is 1. Note
that in the case where G is (d1, . . . , dk)-strongly admissible (and non empty), its Neagu char-
acteristic is its number of vertices minus its number of edges plus its number of mono-colored
cycles.

Now, consider an admissible graph G = (V ;E1, . . . , Ek), consider v ∈ V,w /∈ V, r ∈ [k], and
define

G′ = (V ∪ {w};E1, . . . , Er−1, Er ∪ {v → w}, Er+1, . . . , Ek)

(resp. G′ = (V ∪ {w};E1, . . . , Er−1, Er ∪ {w → v}, Er+1, . . . , Ek)).

Then G′ is admissible if and only if no edge with color r of G begins at v (resp. ends at v),
and is (A1, . . . , Ak)-admissible if and only if moreover, G is (A1, . . . , Ak)-admissible and v is not
the ending (resp. beginning) vertex of a string of G with color r and length dr − 1. When G is
(A1, . . . , Ak)-admissible, if G′ is admissible but not (A1, . . . , Ak)-admissible, then if one denotes
by u the beginning (resp. ending) vertex of the string with color r ending (resp. beginning) at
v, the graph

(V ∪ {w};E1, . . . , Er−1, Er ∪ {v → w,w → u}, Er+1, . . . , Ek)

(resp. (V ∪ {w};E1, . . . , Er−1, Er ∪ {u→ w,w → v}, Er+1, . . . , Ek))

is (A1, . . . , Ak)-admissible. Moreover, the previous graph is also (d1, . . . , dk)-strongly admissible
if and only if G is (d1, . . . , dk)-strongly admissible.

Hence we can define a direct (d1, . . . , dk)-strongly admissible extension of an admissible non
empty graph G = (V ;E1, . . . , Ek) to be either a graph of the type

(V ∪ {w};E1, . . . , Er−1, Er ∪ {v → w}, Er+1, . . . , Ek)

(resp. (V ∪ {w};E1, . . . , Er−1, Er ∪ {w → v}, Er+1, . . . , Ek)),

with r ∈ [k], v ∈ V,w /∈ V when no edge with color r of G begins (resp. ends) at v and v is not
the ending (resp. beginning) vertex of a string of G with color r and length dr − 1 or a graph
of the type

(V ∪ {w};E1, . . . , Er−1, Er ∪ {v → w,w → u}, Er+1, . . . , Ek)

with r ∈ [k], u, v ∈ V,w /∈ V when u, v are the respective beginning and ending vertices of a
string with length dr − 1 and color r.
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By convention, we say that a direct (d1, . . . , dk)-strongly admissible extension of the empty
graph is any graph with two vertices linked by a single edge of any color.

Remark 4.8. Note that a direct (d1, . . . , dk)-strongly admissible extension of an admissible graph
G is (A1, . . . , Ak)-admissible (resp. (d1, . . . , dk)-strongly admissible) if and only if G is, and it
has the same Neagu characteristic as G.

Now, we can define an (d1, . . . , dk)-strongly admissible extension of an admissible graph G to
be a graph G′ such that there exists m ≥ 0 and G0 = G,G1, . . . , Gm = G′ such that for all
i ∈ [m], Gi is a direct (A1, . . . , Ak)-admissible extension of Gi−1.

Remark 4.9. The following results can easily be proved by induction on the m of the previous
definition using remark 4.8.
1. A (d1, . . . , dk)-strongly admissible extension of an admissible graph G is (A1, . . . , Ak)-admissible
(resp. (d1, . . . , dk)-strongly admissible) if and only if G is.
2. A (d1, . . . , dk)-strongly admissible extension of an admissible graph G has the same Neagu
characteristic as G.

Using lemma 4.3 with an induction on the n of this lemma, one can easily prove the following
theorem. Recall that G(w) has been defined in section 4.2.2.

Theorem 4.10. Consider w = gε1

i1
· · · g

ε|w|

i|w|
∈ Mk and denote its canonical right (d1, . . . , dk)-

cyclic reduction by w′. Let ∆m(w) be the partition of the vertex set [|w|] of G(w) defined by

∀l, l′ ∈ [|w|], l = l′ mod ∆m(w)⇐⇒ one of the two words gεl
il
· · · g

εl′−1

il′−1
,

g
εl′

il′
· · · g

ε|w|

i|w|
gε1

i1
· · · g

εl−1

il−1
has the empty word for (d1, . . . dk)-cyclic reduction.

Then G(w)/∆m(w) is a (d1, . . . , dk)-strongly admissible extension of a graph isomorphic to
G(w′).

Remark 4.11. We are not going to use it in the following, but it is easy to see that if G(w′)
is (d1, . . . , dk)-strongly admissible (i.e. if w′ is not of the type gα

i , with i ∈ [k] and α 6= 0), then
∆m(w) is the minimum (with respect to the refinement order) of the set of (d1, . . . , dk)-strong
congruences of G(w), and that in the other case, there is no (d1, . . . , dk)-strong congruence of
G(w).

We shall use the following corollary later. (1 · · · l) denotes the cyclic permutation of [l] which
maps 1 to 2,. . . , l − 1 to l and l to 1.

Corollary 4.12. Consider w = gε1

i1
· · · g

ε|w|

i|w|
∈ Mk and denote its canonical right (d1, . . . , dk)-

cyclic reduction by w′. Suppose that w′ is not the empty word.
(a) If w′ is not of the type gα

i , with i ∈ [k] and α 6= 0, then for all l ≥ 1, there is an (A1, . . . , Ak)-
admissible congruence ∆ of G((1 · · · l), w) such that χ(G((1 · · · l), w)/∆) = 0 and for all m 6=
m′ ∈ [l], (m, 1) 6= (m′, 1) mod ∆.
(b) If w′ is of the type gα

i , with i ∈ [k] and α 6= 0, then for all l ≥ 1 such that |α|l ∈ Ai, there is an
(A1, . . . , Ak)-admissible congruence ∆ of G((1 · · · l), w) such that χ(G((1 · · · l), w)/∆) = |α|l/di

and for all m 6= m′ ∈ [l], (m, 1) 6= (m′, 1) mod ∆.

Proof. Note first that by lemma 4.6, for all l ≥ 1, the function (m, i) ∈ [l]×[|w|] 7→ (l−m)|w|+
i ∈ [l|w|] realizes an isomorphism between G((1 · · · l), w) and G(wl), hence we are going to work
with G(wl) instead of G((1 · · · l), w) (and the condition ”for all m 6= m′ ∈ [l], (m, 1) 6= (m′, 1)
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mod ∆” gets ”for all m 6= m′ ∈ [l], (m − 1)|w| + 1 6= (m′ − 1)|w| + 1 mod ∆”). Let us prove
that in (a) and in (b), ∆ := ∆m(wl) is convenient.

Let w′′ be the canonical right (d1, . . . , dk)-cyclic reduction of wl. Note first that by 1 of remark
4.2, the (d1, . . . , dk)-cyclic reductions of wl are the (d1, . . . , dk)-cyclic reductions of w′l. In the
case (a), where w′l is (d1, . . . , dk)-cyclically reduced by 2 of remark 4.2, it implies that w′′ can be
obtained from w′l by the replacements and transformations mentioned in (b) of theorem 4.1. In
the case (b), it implies, by 2 of remark 4.2, that w′′ = gαl

i if |α|l < di (case which will be denoted
by (b1)) and that w′′ is the empty word if |α|l = di (case which will be denoted by (b2)).

In the case (a), by what precedes, G(w′′) is (A1, . . . , Ak)-admissible and has null Neagu
characteristic. So, since by theorem 4.10, G(wl)/∆ is a (d1, . . . , dk)-strongly admissible extension
of a graph isomorphic to G(w′′), by the remark 4.9, ∆ is an (A1, . . . , Ak)-admissible congruence
of G(wl) and χ(G(wl)/∆) = 0. Moreover, for m < m′ ∈ [l], (m − 1)|w| + 1 = (m′ − 1)|w| + 1

mod ∆ would imply, by definition of ∆, that one of the words wm′−m, wl−(m′−m) has the empty
word for cyclic reduction, which is false by 1 of remark 4.2.

In the case (b1), since |α|l ∈ Ai and |α|l < di, G(w′′) is (A1, . . . , Ak)-admissible and has |α|l/di

for Neagu characteristic. So, since by theorem 4.10, G(wl)/∆ is a (d1, . . . , dk)-strongly admissible
extension of a graph isomorphic to G(w′′), by the remark 4.9, ∆ is an (A1, . . . , Ak)-admissible
congruence of G(wl) and χ(G(wl)/∆) = |α|l/di. Moreover, for m < m′ ∈ [l], (m− 1)|w| + 1 =

(m′ − 1)|w|+ 1 mod ∆ would imply, by definition of ∆, that one of the words wm′−m, wl−m′+l

has the empty word for cyclic reduction, which is false by 1 of remark 4.2.

In the case (b2), G(w′′) is the empty graph, hence is (A1, . . . , Ak)-admissible and has 1 for
Neagu characteristic. So, since by theorem 4.10, G(wl)/∆ is a (d1, . . . , dk)-strongly admissible
extension of a graph isomorphic to G(w′′), by the remark 4.9, ∆ is an (A1, . . . , Ak)-admissible
congruence of G(wl) and χ(G(wl)/∆) = 1. Moreover, for m < m′ ∈ [l], (m − 1)|w| + 1 =

(m′−1)|w|+1 mod ∆ would imply, by definition of ∆, that one of the words wm′−m, wl−(m′−m)

has the empty word for cyclic reduction, which is false by 1 of remark 4.2, since |α|l = di and
m′ −m and l − (m′ −m) both belong to [l − 1]. �

4.3. Application to words in random permutations.

4.3.1. Congruences of G(σ,w) and permutations. We fix again, until the end of section 4.3.1,

k, p ≥ 1, σ ∈ Sp and w = gα1

i1
· · · g

α|w|

i|w|
∈Mk, with i1, . . . , i|w| ∈ [k] and α1, . . . , α|w| ∈ {−1, 1}.

Define, for any s ∈ (Sn)k, the function

γs : (m, l) ∈ V 7→ sαl
il
· · · s

α|w|

i|w|
(m) ∈ [n].

Remark 4.13. It is clear that for all s ∈ (Sn)k, the partition Part(γs) of level sets of this
function is a congruence of G(σ,w). It is also clear, by a descending induction on l, that for all
m 6= m′ ∈ [p], for all l ∈ [|w|], (m, l) 6= (m′, l) mod Part(γs).

Lemma 4.14. Consider a function γ : V → [n] whose level sets partition is a congruence of
G(σ,w) and such that for all m = 1, . . . , p, γ(m, 1) = σ(m). For all s = (s1, . . . , sk) ∈ (Sn)k,
γs = γ if and only if for all r = 1, . . . , k, for all edge e of G(σ,w) with color r,

(13) sr(γ(End(e))) = γ(Beg(e)).

Proof. (⇒) Consider an edge e = (am, l) of G(σ,w) (with m ∈ [p], l ∈ [|w|]). Its color is il.
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• If αl = 1. Then

End(e) =

{

(m, l + 1) if l 6= |w|

(σ−1(m), 1) if l = |w|

and Beg(e) = (m, l).
– If l = |w|, then

sil(γ(End(e))) = sil(γ(σ−1(m), 1)) = sil(σ(σ−1(m))) = si|w|
(m) = γs(m, |w|) = γ(Beg(e)).

– If l < |w|, then

sil(γ(End(e))) = sil(γs(m, l + 1)) = sil(s
αl+1

il+1
· · · s

α|w|

i|w|
(m))

= sαl
il
· · · s

α|w|

i|w|
(m) = γs(Beg(e)) = γ(Beg(e)).

• If αl = −1. Then End(e) = (m, l) and

Beg(e) =

{

(m, l + 1) if l 6= |w|

(σ−1(m), 1) if l = |w|

– If l = |w|, then

sil(γ(End(e))) = si|w|
(γs(m, |w|)) = si|w|

(s−1
i|w|

(m)) = m = σ(σ−1(m)) = γ(Beg(e)).

– If l < |w|, then

sil(γ(End(e))) = sil(γs(m, l)) = sil(s
−1
il

s
αl+1

il+1
· · · s

α|w|

i|w|
(m))

= s
αl+1

il+1
· · · s

α|w|

i|w|
(m) = γs(Beg(e)) = γ(Beg(e)).

(⇐) We have to prove that for all (m, l) ∈ [p]× [|w|],

sαl
il
· · · s

α|w|

i|w|
(m) = γ(m, l).

Let us prove it by descending induction on l.

• If l = |w|. We have to prove that

(14) s
α|w|

i|w|
(m) = γ(m, |w|).

– If α|w| = 1, then (14) follows from (13) for e = (am, |w|). Indeed,

s
α|w|

i|w|
(m) = si|w|

(σ(σ−1(m))) = si|w|
(γ(σ−1(m), 1)) = si|w|

(γ(End(e))) = γ(Beg(e)) = γ(m, |w|).

– If α|w| = −1, then (14) follows again from (13) for e = (am, |w|). Indeed,

s
α|w|

i|w|
(m) = s−1

i|w|
(σ(σ−1(m))) = s−1

i|w|
(γ(σ−1(m), 1)) = s−1

i|w|
(γ(Beg(e))) = γ(End(e)) = γ(m, |w|).

• Suppose the result to be proved to the rank l + 1 ≤ |w|, and let us prove it to the rank
l. We have to prove that

(15) sαl
il

s
αl+1

il+1
· · · s

α|w|

i|w|
(m)

︸ ︷︷ ︸

=γ(m,l+1) by induct. hyp.

= γ(m, l).

– If αl = 1, then (15) follows from (13) for e = (am, l).
– If αl = −1, then for e = (am, l),

sαl
il

(γ(m, l + 1)) = s−1
il

(γ(Beg(e))) = γ(End(e)) = γ(m, l).

�
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Lemma 4.15. Consider two functions γ, γ′ : V → [n] such that

∀m = 1, . . . , p, γ(m, 1) = γ′(m, 1) = σ(m),

and Part(γ) = Part(γ′), which is a congruence of G(σ,w). Then there is τ ∈ Sn such that for
all s = (s1, . . . , sk) ∈ (Sn)k,

γs = γ ⇐⇒ γτsτ−1 = γ′,

where τsτ−1 = (τs1τ
−1, . . . , τskτ

−1).

Proof. Since Part(γ) = Part(γ′), we know that there is τ ∈ Sn such that γ′ = τ ◦ γ. Consider
first s ∈ Sk

n such that γs = γ. We are going to prove that γτsτ−1 = γ′ using the previous lemma.
For r = 1, . . . , k and e edge with color r,

τsrτ
−1(γ′(End(e))) = τsr(γ(End(e)) = τ(γ(Beg(e)) = γ′(Beg(e)).

So we have γτsτ−1 = γ′. In the same way, one can prove that if γτsτ−1 = γ′, then γs = γ. �

4.3.2. Random permutations. We fix again, until the end of the proof of proposition 4.16, k, p ≥
1, σ ∈ Sp and w ∈ Mk. We shall use the notations of section 4.2. We also fix A1,. . . , Ak non
empty sets of positive integers (non of them being {1}), such that for all i, Ai is either finite or

satisfies
∑

j≥1
j /∈Ai

1

j
<∞.

For all n such that S
(A1)
n , . . . , S

(Ak)
n are all non empty, we consider an independent family

s1(n), . . . , sk(n) of random permutations chosen uniformly in respectively S
(A1)
n , . . . , S

(Ak)
n and

define σn = w(s1(n), . . . , sk(n)).

Proposition 4.16. The probability of the event

(16) {∀m = 1, . . . , p, σn(m) = σ(m)}

is equivalent, as n goes to infinity in such a way that S
(A1)
n , . . . , S

(Ak)
n are all non empty, to

(17)
1

np

∑

∆∈C(σ,w,A1,...,Ak)

nχ(G(σ,w)/∆),

where C(σ,w,A1, . . . , Ak) is the set of (A1, . . . , Ar)-congruences ∆ of G(σ,w) such that for all
m 6= m′ ∈ [p], (m, 1) 6= (m′, 1) mod ∆.

Proof. We have seen at remark 4.13 that for all s ∈ (Sn)k, the partition Part(γs) of level sets
of the function

γs : (m, l) ∈ V 7→ sαl
il
· · · s

α|w|

i|w|
(m) ∈ [n]

is a congruence of G(σ,w). Moreover, for all s ∈ (Sn)k, one has

∀m = 1, . . . , p, w(s)(m) = σ(m)⇐⇒ γs(m, 1) = σ(m),

which implies that that for all m 6= m′ ∈ [p], (m, 1) 6= (m′, 1) mod Part(γs).

Hence the probability of the event

{∀m = 1, . . . , p, σn(m) = σ(m)}

is the sum, over all functions γ : V → [n] whose level set partition is a congruence and who
satisfy γ(m, 1) = σ(m) for all m ∈ [p], of the probability that γs1(n),...,sk(n) = γ.
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Now, note that for all r = 1, . . . , k, the distribution of sr(n) is invariant under conjugation
by any permutation, hence since the distribution of (s1(n), . . . , sk(n)) is the tensor product of
the distributions of the sr(n)’s, for all τ ∈ Sn, the distribution of (s1(n), . . . , sk(n)) is the same
as the one of (τs1(n)τ−1, . . . , τsk(n)τ−1). Hence by lemma 4.15, for all function γ : V → [n]
whose level set partition is a congruence and who satisfies γ(m, 1) = σ(m) for all m ∈ [p], the
probability that γs1(n),...,sk(n) = γ only depends on the partition of level sets of γs1(n),...,sk(n).

Hence probability of the event

{∀m = 1, . . . , p, σn(m) = σ(m)}

is the sum, over all congruences ∆ of C(σ,w), of the number of functions γ : V → [n] whose
level set partition is ∆ and who satisfy γ(m, 1) = σ(m) for all m ∈ [p], times the probability
that γs1(n),...,sk(n) is a certain (fixed, but the choice is irrelevant) of these functions. Note that
for ∆ congruence of C(σ,w), the number of such functions is

{

n(n− 1) · · · (n− |∆|+ p + 1) if ∀m 6= m′ ∈ [p], (m, 1) 6= (m′, 1) mod ∆,

0 in the other case,

and that by lemma 4.14, the probability that γs1(n),...,sk(n) is a certain (fixed) of these functions
is






k∏

r=1

p(Ar)
n ((G(σ,w)/∆)[r]) if for all r ∈ [k], all loops of (G(σ,w)/∆)[r] have length in Ar and

all strings of (G(σ,w)/∆)[r] have length < supAr,

0 in the other case.

So by definition of C(σ,w,A1, . . . , Ak), the probability of the event

{∀m = 1, . . . , p, σn(m) = σ(m)}

is equal to

∑

∆∈C(σ,w,A1,...,Ak)

n(n− 1) · · · (n− |∆|+ p + 1)

k∏

r=1

p(Ar)
n ((G(σ,w)/∆)[r]).

Theorem 3.1 allows us to claim that it is equivalent, as n goes to infinity, to

1

np

∑

∆∈C(σ,w,A1,...,Ak)

n|∆|
k∏

r=1

n







−|{edges of (V/∆)[r]}|+

∑

L loop of (V/∆)[r]

length of L

supAr







�

The following result is a direct application of theorem 2.5 applied with A equal to the set of
all positive integers and of proposition 4.16.

Corollary 4.17. If w is such that for all p ≥ 1, for all σ ∈ Sp, for all ∆ ∈ C(σ,w,A1, . . . , Ak),
one has χ(G(σ,w)/∆) ≤ 0, with equality for exactly one ∆ ∈ C(σ,w,A1, . . . , Ak), then for all
l ≥ 1, the law of (N1(σn), . . . , Nl(σl)) converges weakly, as n goes to infinity in such a way that

S
(A1)
n , . . . , S

(Ak)
n are all non empty, to

Poiss(1/1) ⊗ · · · ⊗ Poiss(1/l).
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Remark 4.18. The hypothesis of this corollary do not always hold: as an example, suppose that
w = g4

1g
5
2, with A1 = {4, 5}, A2 = {5, 6}. Then for p = 1 and σ = Id, in the graph G(w), the

partition which only links 1 and 5 has characteristic 8− 9 + 4/5 + 5/6 > 0. Since, as noticed in
remark 2.6, we do not know if theorem 2.5 has an inverse implication, we cannot conclude that
the conclusion of the corollary is false in this case. However, remark 5.2, applied for this word
w and l = 1, allows us to claim that the expectation of the number of fixed points of σn tends to
infinity as n goes to infinity.

5. Main results about words in random permutations

We fix, until the end of section 5, k ≥ 1 and w ∈Mk. We also fix A1,. . . , Ak non empty sets
of positive integers (non of them being {1}), such that for all i, Ai is either finite or satisfies
∑

j≥1
j /∈Ai

1

j
<∞. For all n such that S

(A1)
n , . . . , S

(Ak)
n are all non empty, we consider an independent

family s1(n), . . . , sk(n) of random permutations chosen uniformly in respectively S
(A1)
n , . . . ,

S
(Ak)
n and define σn = w(s1(n), . . . , sk(n)). We are going to study the limit behavior of the

random variables Nl(σn) as n goes to infinity (recall that Nl(σn) denotes the number of cycles
of length l in the cycle decomposition of σn).

5.1. Existence of cycles of most lengths. The first interesting fact is that even though the
lengths of the cycles of the letters of w(s1(n),. . . , sk(n)) are supposed to belong to the specific
sets A1, . . . , Ak of positive integers, in many cases, these cycles are going to mix enough to give
birth to cycles of any length, at least as much as in a uniform random permutation. We are
going to detail more this idea in the following, but we can give a first surprising result of this
kind.

Theorem 5.1. Suppose that the canonical right (d1, . . . , dk)-cyclic reduction w′ of w is not the
empty word.
(a) If w′ is not of the type gα

i , with i ∈ [k], α 6= 0, then for all l ≥ 1, as n goes to infinity in

such a way that for all r = 1, . . . , k, S
(Ar)
n 6= ∅,

lim inf E(Nl(σn)) ≥
1

l
.

(b) If w′ is of the type gα
i , with i ∈ [k], α 6= 0, then for all l ≥ 1 such that |α|l ∈ Ai, as n goes

to infinity in such a way that for all r = 1, . . . , k, S
(Ar)
n 6= ∅,

lim inf
E(Nl(σn))

n|α|l/di
≥

1

l
.

Remark 5.2. In fact, we prove the more general result: for all ∆ ∈ C(cl, w,A1, . . . , Ak),

lim inf
E(Nl(σn))

nχ(G(cl,w)/∆)
≥

1

l
,

with cl := (1 · · · l).

Proof. We have

E(Nl(σn)) =
1

l
E

(
n∑

i=1

1i belongs to a cycle of length l

)

=
1

l

n∑

i=1

P ({i belongs to a cycle of length l}).
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But in the last sum, all terms are equal, since the law of σn is invariant under conjugation.
Moreover, by this invariance principle again, each term is equal to the number of cycles of
length l containing 1 times the probability that σn contains the cycle cl := (1 · · · l). So

E(Nl(σn)) =
n

l

(
n

l − 1

)

(l − 1)!P ({∀m = 1, . . . , l − 1, σn(m) = m + 1, σn(l) = 1})

∼
nl

l
P ({∀m = 1, . . . , l − 1, σn(m) = m + 1, σn(l) = 1}).

Now we are going to use proposition 4.16 for p = l and σ = cl. This proposition allows us to
claim that for all ∆ ∈ C(cl, w,A1, . . . , Ak),

lim inf
E(Nl(σn))

nχ(G(cl,w)/∆)
≥

1

l
.

Then corollary 4.12 allows us to conclude. �

5.2. Case when all Ai’s are infinite. Note first that the random variables Nl(σn) do not
change if w is replaced by its reduction (i.e. by the unique reduced word which represents
the same element in the free group with generators g1, . . . , gk), hence one can suppose w to be
reduced. Note also that the number of cycles of a given length of a permutation is the same as
the one of any other permutation in the same conjugation class, so, by section 4.1.1, one can
suppose w to be cyclically reduced. Note at moreover that the cycle decomposition of a power
of a permutation can be deduced from the cycle decomposition of the permutation itself, so,
since any cyclically reduced word is a power of a primitive word, we are also going to suppose
that w is primitive. Note at last that the case where |w| = 1 has already been treated in section
3.3, so we are going to suppose that |w| > 1.

To sum up, in the following theorem, w is a primitive word with length > 1.

Theorem 5.3. Suppose all Ai’s to be infinite. Then as n goes to infinity in such a way that for

all r = 1, . . . , k, S
(Ar)
n 6= ∅, for all l ≥ 1, the law of (N1(σn), . . . , Nl(σl)) converges weakly to

Poiss(1/1) ⊗ · · · ⊗ Poiss(1/l).

Proof. This result is a direct consequence of corollary 4.17. Note first that since all Ai’s are
infinite, for all i, di = ∞. Hence for all p ≥ 1, for all σ ∈ Sp, for all ∆ congruence of G(σ,w),
χ(G(σ,w)/∆) is the number of classes of ∆ minus the number of edges of G(σ,w)/∆, hence
isn’t positive by theorem 4.7. This theorem also says that there is only one congruence ∆ of
G(σ,w) for which we have equality, it is the singletons partition. It remains only to prove that
the singletons partition is in C(σ,w,A1, . . . , Ak), i.e. that for all r ∈ [k], all loops of G(σ,w)[r]
have length in Ar. It is immediate since there is no loop in G(σ,w)[r]. Indeed, by lemma 4.6,
G(σ,w)[r] is a disjoint union of graphs of the type G(wd)[r] (with d ≥ 1), and since |w| > 1 and
w is cyclically reduced, the letters of w are not all the same and there is no loop in G(wd)[r].
�

5.3. Case where w = g1 · · · gk. Now, we are not going to make the hypothesis that all Ai’s are
infinite anymore, but we are going to suppose that w is a particular word: w = g1 · · · gk, with
k ≥ 2. We have another little restriction: in the case where k = 2 (i.e. where we consider the

product of an element of S
(A1)
n by an element of S

(A2)
n ), we are going to suppose that A1 ∪ A2

is not contained in {1, 2}. It means that we do not consider the product of two involutions.
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Theorem 5.4. Under this hypothesis, as n goes to infinity in such a way that for all r = 1, . . . , k,

S
(Ar)
n 6= ∅, for all l ≥ 1, the law of (N1(σn), . . . , Nl(σl)) converges weakly to

Poiss(1/1) ⊗ · · · ⊗ Poiss(1/l).

In order to prove the theorem, we shall need the following lemmas.

Lemma 5.5. Let X be a finite set, let B be a set of subsets of X which have all cardinality 2. Let
∆ be a partition of X such that for all {x, y} ∈ B, x = y mod ∆. Then we have |∆| ≤ |X |−|B|.

Proof. Let us define a partition Γ of X by

Γ = B ∪ {{z} ; z ∈ X , z /∈ ∪{x,y}∈B{x, y}}.

By hypothesis, any class of ∆ is a union of classes of Γ, so |∆| ≤ |Γ| = |X | − |B|. �

Let us define, for ∆ congruence of an oriented, edge-colored graph G, ∆̂ to be the partition
of the set of edges of G defined by

∀e, f edges of G, [e = f mod ∆̂]⇐⇒ [e, f have the same color and Beg(e) = Beg(f) mod ∆].

Note that since ∆ is a congruence of G, we also have

∀e, f edges of G, [e = f mod ∆̂]⇐⇒ [e, f have the same color and End(e) = End(f) mod ∆].

Remark 5.6. Note also that there is a canonical bijection between the set of classes of ∆̂ and
the set of edges of the graph G/∆.

Lemma 5.7. Consider w = g1 · · · gk, with k ≥ 2, and σ ∈ Sp, with p ≥ 1. Let ∆ be a congruence
of G(σ,w) such that for all i 6= j ∈ [p], (i, 1) 6= (j, 1) mod ∆. Then

(i) the partition ∆̂ of the set of edges of G(σ,w) is the singletons partition,
(ii) the following inequalities hold:

(a) if k > 2, then |∆| ≤ pk −
k∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L,

(b) if k = 2, then for all r = 1, 2, |∆| ≤ pk −
∑

L loop of
(G(σ,w)/∆)[r]

length of L.

Proof. Note first that since for all i 6= j ∈ [p], (i, 1) 6= (j, 1) mod ∆, and by definition of a
congruence, one has (by an obvious induction on l):

(18) ∀i 6= j ∈ [p],∀l ∈ [k], (i, l) 6= (j, l) mod ∆.

This implies that

(19) ∀i 6= j ∈ [p],∀l ∈ [k], (ai, l) 6= (aj , l) mod ∆̂.

Since two edges of G(σ,w) linked by ∆̂ must have the same color, it implies (i).

The proofs of both points of (ii) will be applications of the previous lemma. First, note that
by the first part of the lemma and remark 5.6, the edges of (G(σ,w))/∆ can be identified with
the ones of G(σ,w). Let, for r ∈ [k], L[r] be the set of edges of G(σ,w) which belong to a loop
of (G(σ,w)/∆)[r]. Define

L := ∪k
r=1L[r].
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Note that no edge of L can belong to more than one loop. Indeed, if it where the case, there
would be r ∈ [k], e, e′, e′′ ∈ L[r] such that e′ and e′′ both follow e in loops of (G(σ,w)/∆)[r] and
e′ 6= e′′. Since e′ and e′′ follow e in loops of (G(σ,w)/∆)[r], we have

Beg(e′) = End(e) = Beg(e′′) mod ∆.

But Beg(e′) = Beg(e′′) mod ∆, with the fact that e′ and e′′ are both of color r, implies that
e′ = e′′ mod ∆, which implies e′ = e′′ by (i). Contradiction.

So one can define a permutation ϕ of L which maps any edge e ∈ L to the edge which follows
e in the loop e belongs to. Let us define, for e ∈ L,

S(e) := {End(e),Beg(ϕ(e))} ⊂ [p]×[|w|].

Note that since k ≥ 2, for all edge e of G(σ,w), the color of e is not the same as has the one of
the edge which beginning is the end of e. It allows us to claim that for all e ∈ L, |S(e)| = 2.

For all e ∈ L, since ϕ(e) follows e in G(σ,w)/∆, we have

End(e) = Beg(ϕ(e)) mod ∆.

So, in order to apply the previous lemma, we have to minor the cardinality of

A := {S(e) ; e ∈ L} (to prove (a))

or, for r ∈ [k], of

A[r] := {S(e) ; e ∈ L, e has color r} (to prove (b)).

Consider e 6= f ∈ L such that S(e) = S(f). One has either

(End(e),Beg(ϕ(e))) = (End(f),Beg(ϕ(f)))

or

(End(e),Beg(ϕ(e))) = (Beg(ϕ(f)),End(f)).

But (End(e),Beg(ϕ(e))) = (End(f),Beg(ϕ(f))) is impossible because two different edges of
G(σ,w) cannot have the same end, since no letter of w has the exponent −1. So one has
(End(e),Beg(ϕ(e))) = (Beg(ϕ(f)),End(f)).

If k > 2: let us prove that S(e) = S(f) with e 6= f is impossible. We have End(e) = Beg(ϕ(f)), so
the color following the one of e in the cyclic order 1, 2, . . . , k, 1, . . . is the one of ϕ(f), i.e.
of f . In the same way, the relation End(f) = Beg(ϕ(e)) implies that the color following
the one of f in the same cyclic order is the one of e. To sum up, in this cyclic order, one
has the following direct sequence:

. . . , color of e, color of f, color of e, . . .

which s impossible, since k > 2.
So the cardinality of A is the one of L, and the result (a) is an immediate application

of the previous lemma, for X = [p]×[|w|] and B = A.
If k = 2: We have seen that for e 6= f edges of G(σ,w), S(e) = S(f) implies that the end of the

edge f is the beginning of the edge ϕ(e). It implies that the color of f is different from
the color of ϕ(e), i.e. of e. So for all r = 1, 2, the cardinality of A[r] is the one of L[r],
and the result (b) is an immediate application of the previous lemma, for X = [p]×[|w|]
and B = A[r].
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�

Now we are able to prove theorem 5.4.

Proof of the theorem. Again, we are going to apply corollary 4.17. Let us fix p ≥ 1 and
σ ∈ Sp.

Note that the singletons partition, denoted by ∆s, is in C(σ,w,A1, . . . , Ak). Indeed it is a
congruence by remarks 4.4 and 4.5. It is an (A1, . . . , Ak)-congruence because for all r ∈ [k],
since gr is not the only letter of w, no edge of color r of G(σ,w) is followed by an edge of color
r, hence there is no string with length > 1 and no loop in G(σ,w)[r] . At last, we clearly have
for all i 6= j ∈ [p], (i, 1) 6= (j, 1) mod ∆. Using lemma 4.6, one easily sees that the Neagu
characteristic of G(σ,w) is 0.

Hence it suffices to prove that for all ∆ ∈ C(σ,w,A1, . . . , Ak)\{∆s}, the Neagu characteristic
of G(σ,w)/∆ is negative. Let us fix such a partition ∆. By remark 5.6, we have to prove that

|∆| < |∆̂| −
k∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L

dr
.

By (i) of lemma 5.7, |∆̂| = pk. So we have to prove that

(20) |∆| < pk −
k∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L

dr
.

• If
k∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L = 0, then, since ∆ 6= ∆s, so |∆| < |[p]×[|w|]| = pk, and hence

(20) holds.

• If
k∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L > 0 and k > 2, then since for all r, dr ≥ 2 > 1, by (ii) (a) of

lemma 5.7, (20) holds.

• If
k∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L > 0 and k = 2. First note that adding (ii) (b) of lemma 5.7

for r = 1 and r = 2, and then dividing by 2, one gets

(21) |∆| ≤ pk −
1

2

2∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L.

By hypothesis, one has either d1 > 2 or d2 > 2. Since both cases can be treated in the
same way, we will suppose that d1 > 2. Now, we have to discuss wether there is or not
a loop of color 1.
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- If there is at least one loop of color 1. Then since d1 > 2, the right hand term of
(21) is strictly less than

pk −
2∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L

dr
,

so (20) holds.
- If there is no loop of color 1. Then there is at least one loop of color 2, and, since

d2 > 1, the right hand term in (ii) (b) of lemma 5.7 is strictly less than

pk −
∑

L loop of
(G(σ,w)/∆)[2]

length of L

d2
,

which is equal to

pk −
2∑

r=1

∑

L loop of
(G(σ,w)/∆)[r]

length of L

dr
,

i.e. to the right hand term of (20). So (20) holds.

�

References
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