Limit design of axisymmetric shells with application to cellular cofferdams
Résumé
This paper is devoted to the limit design of cellular cofferdams that are regarded as mixed structures where the backfill is modeled as a three-dimensional continuum, while the surrounding sheet pile wall is treated as a cylindrical shell. Dealing with this structure from a static point of view, it turns out that the problem under consideration requires the calculation of the ultimate load value of a circular cylindrical shell subjected to a linearly varying pressure distribution representing the thrust of the backfill material. Extending the results of previous works, a complete solution to this problem is developed for different boundary conditions. The corresponding results are discussed, notably the influence of the shell relative thickness. They are applied to the design of a single cellular cofferdam whose stability under gravity forces is examined, with the strength of the granular backfill material being described by a Mohr-Coulomb criterion.
Domaines
Mécanique [physics.med-ph]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...