Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2008

Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models

Résumé

This paper concerns the use of sequential Monte Carlo methods (SMC) for smoothing in general state space models. A well-known problem when applying the standard SMC technique in the smoothing mode is that the resampling mechanism introduces degeneracy of the approximation in the path space. However, when performing maximum likelihood estimation via the EM algorithm, all functionals involved are of additive form for a large subclass of models. To cope with the problem in this case, a modification of the standard method (based on a technique proposed by Kitagawa and Sato) is suggested. Our algorithm relies on forgetting properties of the filtering dynamics and the quality of the estimates produced is investigated, both theoretically and via simulations.
Fichier principal
Vignette du fichier
bej6150.pdf (443.2 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00096080 , version 1 (18-09-2006)
hal-00096080 , version 2 (06-03-2008)

Identifiants

Citer

Jimmy Olsson, Olivier Cappé, Randal Douc, Eric Moulines. Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models. Bernoulli, 2008, 14 (1), pp.155-179. ⟨10.3150/07-BEJ6150⟩. ⟨hal-00096080v2⟩
259 Consultations
197 Téléchargements

Altmetric

Partager

More