Expressing Bayesian Fusion as a Product of Distributions: Applications in Robotics - Archive ouverte HAL
Communication Dans Un Congrès Année : 2003

Expressing Bayesian Fusion as a Product of Distributions: Applications in Robotics

Résumé

More and more fields of applied computer science involve fusion of multiple data sources, such as sensor readings or model decision. However incompleteness of the models prevent the programmer from having an absolute precision over their variables. Therefore Bayesian framework can be adequate for such a process as it allows handling of uncertainty. We will be interested in the ability to express any fusion process as a product, for it can lead to reduction of complexity in time and space. We study in this paper various fusion schemes and propose to add a consistency variable to justify the use of a product to compute distribution over the fused variable. We will then show application of this new fusion process to localization of a mobile robot and obstacle avoidance.
Fichier principal
Vignette du fichier
2003_Pradalier_IROS_Expressing.pdf (802.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00089247 , version 1 (16-09-2006)
hal-00089247 , version 2 (17-04-2015)

Identifiants

Citer

Cédric Pradalier, Francis Colas, Pierre Bessière. Expressing Bayesian Fusion as a Product of Distributions: Applications in Robotics. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2003, Las Vegas, United States. pp.1851--1856, ⟨10.1109/IROS.2003.1248913⟩. ⟨hal-00089247v2⟩
287 Consultations
567 Téléchargements

Altmetric

Partager

More