Semistability of Frobenius direct images over curves - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Semistability of Frobenius direct images over curves

Vikram Mehta
  • Fonction : Auteur
  • PersonId : 834512

Résumé

Let $X$ be a smooth projective curve of genus $g \geq 2$ defined over an algebraically closed field $k$ of characteristic $p>0$. Given a semistable vector bundle $E$ over $X$, we show that its direct image $F_*E$ under the Frobenius map $F$ of $X$ is again semistable. We deduce a numerical characterization of the stable rank-$p$ vector bundles $F_*L$, where $L$ is a line bundle over $X$.
Fichier principal
Vignette du fichier
fdi.pdf (156.52 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00087308 , version 1 (22-07-2006)

Identifiants

Citer

Vikram Mehta, Christian Pauly. Semistability of Frobenius direct images over curves. 2006. ⟨hal-00087308⟩
64 Consultations
131 Téléchargements

Altmetric

Partager

More