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SEMISTABILITY OF FROBENIUS DIRECT IMAGES OVER CURVES

VIKRAM B. MEHTA AND CHRISTIAN PAULY

Abstract. Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically
closed field k of characteristic p > 0. Given a semistable vector bundle E over X , we show that its
direct image F∗E under the Frobenius map F of X is again semistable. We deduce a numerical
characterization of the stable rank-p vector bundles F∗L, where L is a line bundle over X .

1. Introduction

Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field
k of characteristic p > 0 and let F : X → X1 be the relative k-linear Frobenius map. It is by
now a well-established fact that on any curve X there exist semistable vector bundles E such
that their pull-back under the Frobenius map F ∗E is not semistable [LanP], [LasP]. In order
to control the degree of instability of the bundle F ∗E, one is naturally lead (through adjunction
HomOX

(F ∗E, E ′) = HomOX1
(E, F∗E

′)) to ask whether semistability is preserved by direct image
under the Frobenius map. The answer is (somewhat surprisingly) yes. In this note we show the
following result.

1.1. Theorem. Assume that g ≥ 2. If E is a semistable vector bundle over X (of any degree),
then F∗E is also semistable.

Unfortunately we do not know whether also stability is preserved by direct image under Frobe-
nius. It has been shown that F∗L is stable for a line bundle L ([LanP] Proposition 1.2) and that in
small characteristics the bundle F∗E is stable for any stable bundle E of small rank [JRXY]. The
main ingredient of the proof is Faltings’ cohomological criterion of semistability. We also need
the fact that the generalized Verschiebung V , defined as the rational map from the moduli space
MX1

(r) of semistable rank-r vector bundles over X1 with fixed trivial determinant to the moduli
space MX(r) induced by pull-back under the relative Frobenius map F ,

Vr : MX1
(r) 99K MX(r), E 7−→ F ∗E

is dominant for large r. We actually show a stronger statement for large r.

1.2. Proposition. If l ≥ g(p − 1) + 1 and l prime, then the generalized Verschiebung Vl is
generically étale for any curve X. In particular Vl is separable and dominant.

As an application of Theorem 1.1 we obtain an upper bound of the rational invariant ν of a
vector bundle E, defined as

ν(E) := µmax(F
∗E) − µmin(F ∗E),

where µmax (resp. µmin) denotes the slope of the first (resp. last) piece in the Harder-Narasimhan
filtration of F ∗E.

1.3. Proposition. For any semistable rank-r vector bundle E

ν(E) ≤ min((r − 1)(2g − 2), (p − 1)(2g − 2)).
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We note that the inequality ν(E) ≤ (r − 1)(2g − 2) was proved in [SB] Corollary 2 and in
[S] Theorem 3.1. We suspect that the relationship between both inequalities comes from the
conjectural fact that the length (=number of pieces) of the Harder-Narasimhan filtration of F ∗E
is at most p for semistable E.

Finally we show that direct images of line bundles under Frobenius are characterized by maxi-
mality of the invariant ν.

1.4. Proposition. Let E be a stable rank-p vector bundle over X. Then the following statements
are equivalent.

(1) There exists a line bundle L such that E = F∗L.
(2) ν(E) = (p − 1)(2g − 2).

We do not know whether the analogue of this proposition remains true for higher rank.

2. Reduction to the case µ(E) = g − 1.

In this section we show that it is enough to prove Theorem 1.1 for semistable vector bundles E
with slope µ(E) = g − 1.

Let E be a semistable vector bundle over X of rank r and let s be the integer defined by the
equality

µ(E) = g − 1 +
s

r
.

Applying the Grothendieck-Riemann-Roch theorem to the Frobenius map F : X → X1, we obtain

µ(F∗E) = g − 1 +
s

pr
.

Let π : X̃ → X be a connected étale covering of degree n and let π1 : X̃1 → X1 denote its twist
by the Frobenius of k (see [R] section 4). The diagram

X̃
F

−−−→ X̃1

π





y





y

π1

X
F

−−−→ X1

(2.1)

is Cartesian and we have an isomorphism

π∗

1(F∗E) ∼= F∗(π
∗E).

Since semistability is preserved under pull-back by a separable morphism of curves, we see that
π∗E is semistable. Moreover if F∗(π

∗E) is semistable, then F∗E is also semistable.

Let L be a degree d line bundle over X̃1. The projection formula

F∗(π
∗E ⊗ F ∗L) = F∗(π

∗E) ⊗ L

shows that semistability of F∗(π
∗E) is equivalent to semistability of F∗(π

∗E ⊗ F ∗L).

Let g̃ denote the genus of X̃. By the Riemann-Hurwitz formula g̃ − 1 = n(g − 1). We compute

µ(π∗E ⊗ F ∗L) = n(g − 1) + n
s

r
+ pd = g̃ − 1 + n

s

r
+ pd,

which gives

µ(F∗(π
∗E ⊗ F ∗L)) = g̃ − 1 + n

s

pr
+ d.

2.1. Lemma. For any integer m there exists a connected étale covering π : X̃ → X of degree
n = pkm for some k.
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Proof. If the p-rank of X is nonzero, the statement is clear. If the p-rank is zero, we know by
Corollaire 4.3.4 [R] that there exist connected étale coverings Y → X of degree pt for infinitely
many integers t (more precisely for all t of the form (l − 1)(g − 1) where l is a large prime). Now
we decompose m = psu with p not dividing u. We then take a covering Y → X of degree pt with
t ≥ s and a covering X̃ → Y of degree u. �

Now the lemma applied to the integer m = pr shows existence of a connected étale covering
π : X̃ → X of degree n = pkm. Hence n s

pr
is an integer and we can take d such that n s

pr
+ d = 0.

To summarize, we have shown that for any semistable E over X there exists a covering π : X̃ →
X and a line bundle L over X̃1 such that the vector bundle Ẽ := π∗E ⊗ F ∗L is semistable with
µ(Ẽ) = g̃ − 1 and such that semistability of F∗Ẽ implies semistability of F∗E.

3. Proof of Theorem 1.1

In order to prove semistability of F∗E we shall use the cohomological criterion of semistability
due to Faltings [F].

3.1. Proposition ([L] Théorème 2.4 ). Let E be a rank-r vector bundle over X with µ(E) = g−1

and l an integer > r2

4
(g−1). Then E is semistable if and only if there exists a rank-l vector bundle

G with trivial determinant such that

h0(X, E ⊗ G) = h1(X, E ⊗ G) = 0.

Moreover if the previous condition holds for one bundle G, it holds for a general bundle by
upper semicontinuity of the function G 7→ h0(X, E ⊗ G).

Remark. The proof of this proposition (see [L] section 2.4) works over any algebraically closed
field k.

By Proposition 1.2 (proved in section 4) we know that Vl is dominant when l is a large prime
number. Hence a general vector bundle G ∈ MX(l) is of the form F ∗G′ for some G′ ∈ MX1

(l).
Consider a semistable E with µ(E) = g−1. Then by Proposition 3.1 h0(X, E⊗G) = 0 for general
G ∈ MX(l). Assuming G general, we can write G = F ∗G′ and we obtain by adjunction

h0(X, E ⊗ F ∗G′) = h0(X1, F∗E ⊗ G′) = 0.

This shows that F∗E is semistable by Proposition 3.1.

4. Proof of Proposition 1.2

According to [MS] section 2 it will be enough to prove the existence of a stable vector bundle
E ∈ MX1

(l) satisfying F ∗E stable and

h0(X1, B ⊗ End0(E)) = 0,

because the vector space H0(X1, B⊗End0(E)) can be identified with the kernel of the differential
of Vl at the point E ∈ MX1

(l). Here B denotes the sheaf of locally exact differentials over X1 (see
[R] section 4).

Let l 6= p be a prime number and let α ∈ JX1[l] ∼= JX[l] be a nonzero l-torsion point. We
denote by

π : X̃ → X and π1 : X̃1 → X1

the associated cyclic étale cover of X and X1 and by σ a generator of the Galois group Gal(X̃/X) =
Z/lZ. We recall that the kernel of the Norm map

Nm : JX̃ −→ JX
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has l connected components and we denote by

i : P := Prym(X̃/X) ⊂ JX̃

the associated Prym variety, i.e., the connected component containing the origin. Then we have
an isogeny

π∗ × i : JX × P −→ JX̃

and taking direct image under π induces a morphism

P −→ MX(l), L 7−→ π∗L.

Similarly we define the Prym variety P1 ⊂ JX1 and the morphism P1 → MX1
(l) (obtained by

twisting with the Frobenius of k). Note that π1∗L is semistable for any L ∈ P1 and stable for
general L ∈ P1 (see e.g. [B]). Since F ∗(π1∗L) ∼= π∗(F

∗L) — see diagram (2.1) — and since F ∗

induces the Verschiebung VP : P1 → P , which is surjective, we obtain that π1∗L and F ∗(π1∗L) are
stable for general L ∈ P1.

Therefore Proposition 1.2 will immediately follow from the next Proposition.

4.1. Proposition. If l ≥ g(p− 1) + 1 then there exists a cyclic degree l étale cover π1 : X̃1 → X1

with the property that
h0(X1, B ⊗ End0(π1∗L)) = 0

for general L ∈ P1.

Proof. By relative duality for the étale map π1 we have (π1∗L)∗ ∼= π1∗L
−1. Therefore

End(π1∗L) ∼= π1∗L ⊗ π1∗L
−1 ∼= π1∗

(

L−1 ⊗ π∗

1π1∗L
)

by the projection formula. Moreover since π1 is Galois étale we have a direct sum decomposition

π∗

1π1∗L ∼= ⊕l−1
i=0(σ

i)∗L.

Putting these isomorphisms together we find that

H0(X1, B ⊗ End(π1∗L)) = H0(X1, B ⊗ π1∗

(

⊕l−1
i=0L

−1 ⊗ (σi)∗L
)

= ⊕l−1
i=0H

0(X1, B ⊗ π1∗(L
−1 ⊗ (σi)∗L))

= H0(X1, B ⊗ π1∗OX̃1
) ⊕⊕l−1

i=1H
0(X1, B ⊗ π1∗(L

−1 ⊗ (σi)∗L)).

Moreover π∗OX̃1
= ⊕l−1

i=0α
i, which implies that

(4.1) H0(X1, B ⊗ End0(π1∗L)) = ⊕l−1
i=1H

0(X1, B ⊗ αi) ⊕⊕l−1
i=1H

0(X1, B ⊗ π1∗(L
−1 ⊗ (σi)∗L)).

Let us denote for i = 1, . . . , l − 1 by φi the isogeny

φi : P1 −→ P1, L 7−→ L−1 ⊗ (σi)∗L.

Since the function L 7→ h0(X1, B ⊗ End0(π1∗L)) is upper semicontinuous, it will be enough to

show the existence of a cover π1 : X̃1 → X1 satisfying

(1) for i = 1, . . . , l−1, h0(X1, B⊗αi) = 0 (or equivalently, P is an ordinary abelian variety).
(2) for M general in P , h0(X1, B ⊗ π1∗M) = 0.

Note that these two conditions implie that the vector space (4.1) equals {0} for general L ∈ P1,
because the φi’s are surjective.

We recall that ker (π∗
1 : JX1 → JX̃1) = 〈α〉 ∼= Z/lZ and that

P1[l] = P1 ∩ π∗

1(JX1) ∼= α⊥/〈α〉

where α⊥ = {β ∈ JX1[l] with ω(α, β) = 1} and ω : JX1[l]× JX1[l] → µl denotes the symplectic
Weil form. Consider a β ∈ α⊥ \ 〈α〉. Then π∗

1β ∈ P1[l] and

π1∗π
∗

1β = ⊕l=1
i=0β ⊗ αi.
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Again by upper semicontinuity of the function M 7→ h0(X1, B ⊗ π1∗M) one observes that the
conditions (1) and (2) are satisfied because of the following lemma (take M = π∗

1β).

4.2. Lemma. If l ≥ g(p − 1) + 1 then there exists a pair (α, β) ∈ JX1[l] × JX1[l] satisfying

(1) α 6= 0 and β ∈ α⊥ \ 〈α〉,
(2) for i = 1, . . . , l − 1 h0(X1, B ⊗ αi) = 0,
(3) for i = 0, . . . , l − 1 h0(X1, B ⊗ β ⊗ αi) = 0.

Proof. We adapt the proof of [R] Lemme 4.3.5. We denote by Fl the finite field Z/lZ. Then
there exists a symplectic isomorphism JX1[l] ∼= F

g
l × F

g
l , where the latter space is endowed with

the standard symplectic form. Note that composition is written multiplicatively in JX1[l] and
additively in F

2g
l . A quick computation shows that the number of isotropic 2-planes in F

g
l × F

g
l

equals

N(l) =
(l2g − 1)(l2g−2 − 1)

(l2 − 1)(l − 1)
.

Let ΘB ⊂ JX1 denote the theta divisor associated to B. Then by [R] Lemma 4.3.5 the cardinality
A(l) of the finite set Σ(l) := JX1[l] ∩ ΘB satisfies

A(l) ≤ l2g−2g(p − 1).

Suppose that there exists an isotropic 2-plane Π ⊂ F
g
l × F

g
l which contains ≤ l − 2 points of

Σ(l). Then we can find a pair (α, β) satisfying the 3 properties of the Lemma as follows: any
nonzero point x ∈ Π determines a line (=Fl-vector space of dimension 1). Since a line contains
l − 1 nonzero points, we obtain at most (l − 1)(l − 2) nonzero points lying on lines generated by
Σ(l) ∩ Π. Since (l − 1)(l − 2) < l2 − 1 there exists a nonzero α in the complement of these lines.
Now we note that there are l−1 affine lines parallel to the line generated by α and the l points on
any of these affine lines are of the form βαi for i = 0, . . . , l − 1 for some β ∈ α⊥ \ 〈α〉. The points
Σ(l) ∩Π lie on at most l − 2 such affine lines, hence there exists at least one affine line parallel to
〈α〉 avoiding Σ(l). This gives β.

Finally let us suppose that any isotropic 2-plane contains ≥ l − 1 points of Σ(l). Then we will
arrive at a contradiction as follows: we introduce the set

S = {(x, Π) | x ∈ Π ∩ Σ(l) and Π isotropic 2-plane}.

with cardinality |S|. Then by our assumption we have

(4.2) |S| ≥ (l − 1)N(l).

On the other hand, since any nonzero x ∈ F
g
l × F

g
l is contained in l2g−2−1

l−1
isotropic 2-planes, we

obtain

(4.3) |S| ≤
l2g−2 − 1

l − 1
A(l).

Putting (4.2) and (4.3) together, we obtain

A(l) ≥
l2g − 1

l + 1
.

But this contradicts the inequality A(l) ≤ l2g−2g(p − 1) if l ≥ g(p − 1) + 1. �

This completes the proof of Proposition 4.1. �

Remark. It has been shown [O] Theorem A.6 that Vr is dominant for any rank r and any
curve X, by using a versal deformation of a direct sum a r line bundles.

Remark. We note that Vr is not separable when p divides the rank r and X is non-ordinary.
In that case the Zariski tangent space at a stable bundle E ∈ MX1

(r) identifies with the quotient



6 VIKRAM B. MEHTA AND CHRISTIAN PAULY

H1(X1, End0(E))/〈e〉 where e denotes the nonzero extension class of End0(E) by OX1
given by

End(E). Then the inclusion of homotheties OX1
→֒ End0(E) induces an inclusion H1(X1,OX1

) ⊂
H1(X1, End0(E))/〈e〉 and the restriction of the differential of Vr at the point E to H1(X1,OX1

)
coincides with the non-injective Hasse-Witt map.

5. Proof of Proposition 1.3

Since we already know that ν(E) ≤ (r − 1)(2g − 2) ([SB], [S]) it suffices to show that ν(E) ≤
(p − 1)(2g − 2).

We consider the quotient F ∗E → Q with minimal slope, i.e., µ(Q) = µmin(F ∗E) and Q
semistable. By adjunction we obtain a nonzero morphism E → F∗(Q), from which we deduce
(using Theorem 1.1) that

µ(E) ≤ µ(F∗Q) =
1

p
(µmin(F ∗E) + (p − 1)(g − 1))

hence
µ(F ∗E) ≤ µmin(F ∗E) + (p − 1)(g − 1).

Similarly we consider the subbundle S →֒ F ∗E with maximal slope,i.e., µ(S) = µmax(F
∗E) and

S semistable. Taking the dual and proceeding as above, we obtain that

µ(F ∗E) ≥ µmax(F
∗E) − (p − 1)(g − 1).

Now we combine both inequalities and we are done.

Remark. We note that the inequality of Proposition 1.3 is sharp. The maximum (p−1)(2g−2)
is obtained for the bundles E = F∗E

′ (see [JRXY] Theorem 5.3).

6. Characterization of direct images

Consider a line bundle L over X. Then the direct image F∗L is stable ([LanP] Proposition 1.2)
and the Harder-Narasimhan filtration of F ∗F∗L is of the form (see [JRXY])

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vp−1 ⊂ Vp = F ∗F∗L, with Vi/Vi−1
∼= L ⊗ ωp−i

X .

In particular ν(F∗L) = (p − 1)(2g − 2). In this section we will show a converse statement.

More generally let E be a stable rank-rp vector bundle with µ(E) = g − 1 + d
rp

for some integer d

and satisfying

(1) the Harder-Narasimhan filtration of F ∗E has l terms.
(2) ν(E) = (p − 1)(2g − 2).

Questions. Do we have l ≤ p? Is E of the form E = F∗G for some rank-r vector bundle G?
We will give a positive answer in the case r = 1 (Proposition 6.1).

Let us denote the Harder-Narasimhan filtration by

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vl−1 ⊂ Vl = F ∗E, Vi/Vi−1 = Mi.

satisfying the inequalities

µmax(F
∗E) = µ(M1) > µ(M2) > . . . > µ(Ml) = µmin(F ∗E).

The quotient F ∗E → Ml gives via adjunction a nonzero map E → F∗Ml. Since F∗Ml is semistable,
we obtain that µ(E) ≤ µ(F∗Ml). This implies that µ(Ml) ≥ g − 1 + d

r
. Similarly taking the dual

of the inclusion M1 ⊂ F ∗E gives a map F ∗(E∗) → M∗
1 and by adjunction E∗ → F∗(M

∗
1 ). Let us

denote µ(M∗
1 ) = g − 1 + δ, so that µ(F∗(M

∗
1 )) = g − 1 + δ

p
. Because of semistability of F∗(M

∗
1 ),

we obtain −(g − 1 + d
rp

) = µ(E∗) ≤ µ(F ∗(M∗
1 )), hence δ ≥ −2p(g − 1) − d

r
. This implies that
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µ(M1) ≤ (2p−1)(g−1)+ d
r
. Combining this inequality with µ(Ml) ≥ g−1+ d

r
and the assumption

µ(M1) − µ(Ml) = (p − 1)(2g − 2), we obtain that

µ(M1) = (2p − 1)(g − 1) +
d

r
, µ(Ml) = g − 1 +

d

r
.

Let us denote by ri the rank of the semistable bundle Mi. We have the equality

(6.1)

l
∑

i=1

ri = rp.

Since E is stable and F∗(Ml) is semistable and since these bundles have the same slope, we deduce
that rl ≥ r. Similarly we obtain that r1 ≥ r.

Note that it is enough to show that rl = r. Since E is stable and F∗Ml semistable and since the
two bundles have the same slope and rank, they will be isomorphic.

We introduce the integers for i = 1, . . . , l − 1

δi = µ(Mi+1) − µ(Mi) + 2(g − 1) = µ(Mi+1 ⊗ ω) − µ(Mi).

Then we have the equality

(6.2)

l−1
∑

i=1

δi = µ(Ml) − µ(M1) + 2(l − 1)(g − 1) = 2(l − p)(g − 1).

We note that if δi < 0, then Hom(Mi, Mi+1 ⊗ ω) = 0.

6.1. Proposition. Let E be stable rank-p vector bundle with µ(E) = g − 1 + d
p

and ν(E) =

(p − 1)(2g − 2). Then E = F∗L for some line bundle L of degree g − 1 + d.

Proof. Let us first show that l = p. We suppose that l < p. Then
∑l−1

i=1 δi = 2(l − p)(g − 1) < 0
so that there exists a k ≤ l − 1 such that δk < 0. We may choose k minimal, i.e.,δi ≥ 0 for i < k.
Then we have

(6.3) µ(Mk) > µ(Mi) + 2(g − 1) for i > k.

We recall that µ(Mi) ≤ µ(Mk+1) for i > k. The Harder-Narasimhan filtration of Vk is given by
the first k terms of the Harder-Narasimhan filtration of F ∗E. Hence µmin(Vk) = µ(Mk).

Consider now the canonical connection ∇ on F ∗E and its first fundamental form

φk : Vk →֒ F ∗E
∇

−→ F ∗E ⊗ ωX −→ (F ∗E/Vk) ⊗ ωX .

Since µmin(Vk) > µ(Mi ⊗ ω) for i > k we obtain φk = 0. Hence ∇ preserves Vk and since ∇ has
zero p-curvature, there exists a subbundle Ek ⊂ E such that F ∗Ek = Vk.

We now evaluate µ(Ek). By assumption δi ≥ 0 for i < k. Hence

µ(Mi) ≥ µ(M1) − 2(i − 1)(g − 1) for i ≤ k,

which implies that

deg (Vk) =
k

∑

i=1

riµ(Mi) ≥ rk (Vk)µ(M1) − 2(g − 1)
k

∑

i=1

ri(i − 1).

Hence we obtain
pµ(Ek) = µ(Vk) ≥ µ(M1) − 2(g − 1)C,

where C denotes the fraction
∑k

i=1
ri(i−1)

rk (Vk)
. We will prove in a moment that C ≤ p−1

2
, so that we

obtain by substitution

pµ(Ek) ≥ (2p − 1)(g − 1) + d − (g − 1)(p − 1) = p(g − 1) + d = pµ(E),



8 VIKRAM B. MEHTA AND CHRISTIAN PAULY

contradicting stability of E. Now let us show that C ≤ p−1
2

or equivalently

k
∑

i=1

iri ≤
p + 1

2

k
∑

i=1

ri.

But that is obvious if k ≤ p−1
2

. Now if k > p−1
2

we note that passing from E to E∗ reverses the

order of the δi’s, so that the index k∗ for E∗ satisfies k∗ ≤ p−1
2

. This proves that l = p.

Because of (6.1) we obtain ri = 1 for all i and therefore E = F∗Mp.
�

7. Stability of F∗E?

Is stability also preserved by F∗?

We show the following result in that direction.

7.1. Proposition. Let E be a stable vector bundle over X. Then F∗E is simple.

Proof. Using relative duality (F∗E)∗ ∼= F∗(E
∗ ⊗ ω1−p

X ) we obtain

H0(X1, End(F∗E)) = H0(X, F ∗F∗E ⊗ E∗ ⊗ ω1−p
X ).

Moreover the Harder-Narasimhan filtration of F ∗F∗E is of the form (see [JRXY])

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vp−1 ⊂ Vp = F ∗F∗E, with Vi/Vi−1
∼= E ⊗ ωp−i

X .

We deduce that

H0(X, F ∗F∗E ⊗ E∗ ⊗ ω1−p
X ) = H0(X, V1 ⊗ E∗ ⊗ ω1−p

X ) = H0(X, End(E)),

and we are done. �
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