Communication Dans Un Congrès Année : 1999

The transcendence required for computing the sphere and wave front in the Martinet sub-Riemannian geometry

Résumé

Consider a \it{sub-Riemannian geometry} $(U,D,g)$ where $U$ is a neighborhood of $O$ in $\mathbb{R}^3$, $D$ is a \it{Martinet type distribution} identified to $Ker \,\omega$, $\omega =dz-\f{y^2}{2}dx$, $q=(x,y,z)$ and $g$ is a \it{metric on $D$} which can be taken in the normal form : \mbox{$a(q)dx^2+c(q)dy^2$}, \mbox{$a=1+yF(q)$}, \mbox{$c=1+G(q)$}, \mbox{$G_{|x=y=0}=0$}. In a previous article we analyzed the \it{flat case} : \mbox{$a=c=1$} ; we showed that the set of geodesics is integrable using \it{elliptic integrals} of the \it{first and second kind} ; moreover we described the sphere and the wave front near the abnormal direction using the \it{\mbox{exp-log} category}. The objective of this article is to analyze the transcendence we need to compute the sphere and the wave front of small radius in the abnormal direction and globally when we consider the gradated normal form of order $0$ : \mbox{$a=(1+\alpha y)^2$}, \mbox{$c=(1+\beta x + \gamma y)^2$}, where $\alpha, \beta, \gamma$ are real parameters.
Fichier principal
Vignette du fichier
final3.pdf (376.75 Ko) Télécharger le fichier

Dates et versions

hal-00086419 , version 1 (19-07-2006)

Identifiants

  • HAL Id : hal-00086419 , version 1

Citer

Bernard Bonnard, Geneviève Launay, Emmanuel Trélat. The transcendence required for computing the sphere and wave front in the Martinet sub-Riemannian geometry. 1999, pp.82--117. ⟨hal-00086419⟩
104 Consultations
84 Téléchargements

Partager

More