Some new estimates on the spectral shift function associated with random Schrödinger operators - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Some new estimates on the spectral shift function associated with random Schrödinger operators

Résumé

We prove some new pointwise-in-energy bounds on the expectations of various spectral shift functions associated with random Schrödinger operators in the continuum having Anderson-type random potentials in both finite-volume and infinite-volume. These estimates are a consequence of our new Wegner estimate for finite-volume random Schrödinger operators. For lattice models, we also obtain a representation of the infinite-volume density of states in terms of a spectral shift function. For continuum models, the corresponding measure is absolutely continuous with respect to the density of states and agrees with it in certain cases. We present a variant of a new spectral averaging result and use it to prove a pointwise upper bound on the SSF for finite-rank perturbations.
Fichier principal
Vignette du fichier
ssf1new.pdf (178.08 Ko) Télécharger le fichier

Dates et versions

hal-00067801 , version 1 (09-05-2006)
hal-00067801 , version 2 (13-10-2006)

Identifiants

Citer

Frédéric Klopp, Jean-Michel Combes, Peter Hislop. Some new estimates on the spectral shift function associated with random Schrödinger operators. 2006. ⟨hal-00067801v1⟩
596 Consultations
228 Téléchargements

Altmetric

Partager

More