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Département de Mathématiques
Université du Sud, Toulon-Var

83130 La Garde, FRANCE

Peter D. Hislop 2

Department of Mathematics
University of Kentucky

Lexington, KY 40506–0027 USA

Frédéric Klopp

L.A.G.A, Institut Galilée
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Abstract

We prove some new pointwise-in-energy bounds on the expectations of var-
ious spectral shift functions associated with random Schrödinger operators
in the continuum having Anderson-type random potentials in both finite-
volume and infinite-volume. These estimates are a consequence of our new
Wegner estimate for finite-volume random Schrödinger operators [4]. For
lattice models, we also obtain a representation of the infinite-volume density
of states in terms of a spectral shift function. For continuum models, the
corresponding measure is absolutely continuous with respect to the density
of states and agrees with it in certain cases. We present a variant of the
spectral averaging result of [4] and use it to prove a pointwise upper bound
on the SSF for finite-rank perturbations.
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1 Introduction: The Wegner Estimate and

the Spectral Shift Function

Some recent analyses of random Schrödinger operators have involved three
related concepts: the Wegner estimate for the finite-volume Hamiltonians,
the spectral shift function (SSF), and the integrated density of states (IDS).
In this note, we prove some new pointwise bounds on the expectation of
some SSFs that occur in the theory of random Schrödinger operators in the
continuum. These bounds result from an improved version of the Wegner
estimate [4]. In earlier work [3, 7], we used Lp-bounds on the SSF in order
to obtain better estimates on the IDS. In our most recent work, we obtain
an optimal Wegner estimate directly without using the SSF and found, as
a consequence, new pointwise bounds on the expectation of the SSF. It has
often been conjectured that in the case of ergodic, random, Schrödinger oper-
ators of the form considered here the SSF for a local single-site perturbation
should be in L∞

loc(R) once it is averaged over the random variables on which
the disordered potential depends. We prove this in this note. We mention
that these types of bounds on the SSF also play a motivating role in the
fractional moment method for proving localization in the continuum [1]. For
lattice models, the pointwise bounds on the SSF are a simple consequence of
the fact that the corresponding perturbations are finite-rank (cf. [2, 21] and
section 4.3).

We first recall a special case of the Wegner estimate proved in [4] that will
be used for the bounds on the SSF. We refer to [4] for the general statement,
valid for arbitrary bounded processes on Z

d, and the proofs. The family
of Schrödinger operators Hω = H0 + Vω, on L2(Rd), is constructed from a
deterministic, Zd-periodic, background operator H0 = (−i∇ − A0)

2 + V0.
We consider an Anderson-type random potential Vω constructed from the
single-site potential u as

Vω(x) =
∑

j∈Zd

ωju(x− j). (1)

The family of random variables is assumed to be independent, and identically
distributed (iid). The results are independent of the disorder provided it is
nonzero.

We define local versions of the Hamiltonians and potentials associated
with bounded regions in R

d. By ΛL(x), we mean the open cube of side
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length L centered at x ∈ Rd. For Λ ⊂ Rd, we denote the lattice points in
Λ by Λ̃ = Λ ∩ Zd. For a cube Λ, we take HΛ

0 and HΛ (omitting the index
ω) to be the restrictions of H0 and Hω, respectively, to the cube Λ, with
periodic boundary conditions on the boundary ∂Λ of Λ. We denote by EΛ

0 (·)
and EΛ(·) the spectral families for HΛ

0 and HΛ, respectively. Furthermore,
for Λ ⊂ Rd, let χΛ be the characteristic function for Λ. The local potential
VΛ is defined by

VΛ(x) = Vω(x)χΛ(x), (2)

and we assume this can be written as

VΛ(x) =
∑

j∈Λ̃

ωju(x− j). (3)

For example, if the support of u is contained in a single unit cube, the
formula (3) holds. We refer to the discussion in [3] when the support of u is
compact, but not necessarily contained inside one cube. In this case, VΛ can
be written as in (3) plus a boundary term of order |∂Λ| and hence it does
not contribute to the large |Λ| limit. Hence, we may assume (3) without any
loss of generality. We will also use the local potential obtained from (3) by
setting all the random variables to one, that is,

ṼΛ(x) =
∑

j∈Λ̃

uj(x), (4)

where we will write uj(x) = u(x− j).
We will always make the following four assumptions:

(H1). The background operator H0 = (−i∇ − A0)
2 + V0 is a lower semi-

bounded, Zd-periodic Schrödinger operator with a real-valued, Zd-periodic,
potential V0, and a Zd-periodic vector potential A0. We assume that
V0 and A0 are sufficiently regular so that H0 is essentially self-adjoint
on C∞

0 (Rd).

(H2). The periodic operator H0 has the unique continuation property, that
is, for any E ∈ R and for any function φ ∈ H2

loc(R
d), if (H0 −E)φ = 0,

and if φ vanishes on an open set, then φ ≡ 0.

(H3). The nonzero, non negative, compactly supported, single-site potential
u ∈ L∞

0 (Rd), and it is strictly positive on a nonempty open set. We
assume that ‖u‖∞ ≤ 1.
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(H4). The random coupling constants {ωj | j ∈ Zd}, are independent and
identically distributed. The probability distribution µ0 of ω0 is com-
pactly supported with a bounded density h0 ∈ L∞

0 (R).

These imply that the infinite-volume random Schrödinger operator Hω is
ergodic with respect to the group of Zd-translations.

Our results also apply to the randomly perturbed Landau Hamiltonian
Hω(λ) = HL(B) + λVω, for λ 6= 0, where Vω is an Anderson-type potential
as in (1). The Landau Hamiltonian HL(B) on L2(R2) is given by

HL(B) = (−i∇− A0)
2, with A0(x, y) =

B

2
(−y, x). (5)

The constant B 6= 0 is the magnetic field strength.
Under these assumptions, the Wegner estimate necessary for our purposes

has the following form.

Theorem 1.1 We assume that the family of random Schrödinger operators
Hω = H0 + Vω on L2(Rd) satisfies hypotheses (H1)-(H4). Then, there exists
a locally uniform constant CW > 0 such that for any E0 ∈ R, and ǫ ∈ (0, 1],
the local Hamiltonians HΛ satisfy the following Wegner estimate

IP{dist(σ(HΛ), E0) < ǫ} ≤ IE{TrEΛ([E0 − ǫ, E0 + ǫ])}

≤ CW ǫ|Λ|. (6)

A similar estimate holds for randomly perturbed Landau Hamiltonians.

This theorem immediately implies the Lipschitz continuity of the inte-
grated density of states [4]. As a consequence, the density of states (DOS)
exists and is a locally bounded function. In this note, we use Theorem 1.1 to
prove new pointwise bounds on the expectation of the SSF for both finite-
volume and infinite-volume random Schrödinger operators. We comment on
the relation of these results to various results concerning the SSF for random
Schrödinger operators in section 4.

2 Bounds on the Spectral Shift Function for

Finite-Volume Hamiltonians

We use the result of Theorem 1.1 to bound the expectation of the SSF for a
single-site perturbation of a finite-volume Hamiltonian HΛ. Since the size of
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the support of the perturbation u is of order one relative to |Λ|, we expect
the SSF to be of order one also. For a discussion of the relation between the
IDS and the SSF, we refer the reader to [7] and references therein. A nice
review of results concerning the SSF may be found in [2]. We recall that for
a pair of self-adjoint operators (H(1), H(0)), such that f(H(1))− f(H(0)) is
trace-class, the SSF ξ(E;H(1), H(0)) is defined through the trace formula.
For example, for any f ∈ C1

0 (R), we have

Tr[f(H(1))− f(H(0))] =

∫

R

f ′(E)ξ(E;H(1), H(0)) dE. (7)

We first consider a one-parameter family of self-adjoint operators H(λ) =
H0 + λV , with V ≥ 0, and λ uniformly distributed on [0, 1]. Birman and
Solomyak proved a relation (cf. [18]) between the averaged, weighted, trace
of the spectral projector Eλ(·) of H(λ), and the SSF for the pair H(1) ≡
H(λ = 1) and H(0) ≡ H(λ = 0) = H0. For any measurable ∆ ⊂ R, this
formula has the form

∫ 1

0

dλ Tr V 1/2Eλ(∆)V 1/2 =

∫

∆

dE ξ(E;H0 + V,H0), (8)

whenever all the terms exist. For example, if V is relatively H0-trace class,
then all the terms are well-defined.

We apply this formula as follows. First, we must also make a stronger
hypothesis on the probability distribution than (H4). We will assume:

(H4’). The random coupling constants {ωj | j ∈ Zd}, are independent and
identically distributed. The probability distribution µ0 of ω0 is the
uniform distribution on [0, 1].

Second, without loss of generality, we normalize the single-site potential u ≥
0 so that 0 ≤

∑

j uj ≤ 1 and it follows trivially that

∑

j∈Λ̃

Tru
1/2
j EΛ(∆)u

1/2
j ≤ TrEΛ(∆). (9)

We now consider the effect of the variation of one random variable ωj, for
j ∈ Λ̃, on the local Hamiltonian. In formula (8), we take H(0) = HΛ(ωj = 0),
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H(1) = HΛ(ωj = 1), so that λ = ωj , and V = uj ≥ 0. We write HΛ
j⊥ for HΛ

with ωj = 0. The Birman-Solomyak formula (8) then has the form

∫ 1

0

dωj Tr u
1/2
j EΛ(∆)u

1/2
j =

∫

∆

dE ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥). (10)

Taking the expectation of (9) and using formula (10), we obtain

IE{
∑

j∈Λ̃

Tr u
1/2
j EΛ(∆)u

1/2
j } =

∑

j∈Λ̃

IE

{
∫

∆

dE ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥)

}

≤ IE{TrEΛ(∆)}

≤ C0 |∆| |Λ|, (11)

where we used the result of the proof of Theorem 1.1 on the last line. We
conclude from (11) that

1

|∆|

∫

∆

dE







1

|Λ|

∑

j∈Λ̃

IE{ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥)}







≤ C0. (12)

If the spatially averaged expectation of the SSF is L1
loc(R) in E, we can

conclude a pointwise bound from (12), for Lebesgue almost every energy E,
of the form

IE







1

|Λ|

∑

j∈Λ̃

ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥)







≤ C0. (13)

In [7], we proved that the SSF for local Schrödinger operators with compactly-
supported perturbations is locally-L1, so this pointwise bound (13) holds.
Finally, we observe that due to the periodic boundary conditions on ∂Λ and
the Zd-periodicity of H0, we have that for any j, k ∈ Λ̃

IE{ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥)} = IE{ξ(E;HΛ

k⊥ + uk, H
Λ
k⊥)}, (14)

and consequently it follows from (13) that for any j ∈ Λ̃,

IE{ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥)} ≤ C0. (15)

Theorem 2.1 Under the hypotheses (H1)-(H4’), the expectation of the spec-
tral shift function, corresponding to the variation of a single site of the finite-
volume Hamiltonian, is uniformly locally bounded in energy. That is, for any
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bounded energy interval, there is a constant CI > 0, independent of Λ, so
that for Lebesgue almost every E ∈ I, we have

IE{ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥)} ≤ CI , (16)

for any j ∈ Λ̃.

In the lattice case, the perturbation uj is rank-one, so by the general
theory (cf. [21, 2], or see section 4.3), we have the bound

ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥) ≤ 1, (17)

for any j ∈ Λ̃, uniformly in E ∈ R.

3 Bounds on the Spectral Shift Function for

Infinite-Volume Hamiltonians

We consider the thermodynamic limit of the SSF in (13). The Birkhoff
Ergodic Theorem implies that the limit of the right side of (13) is the expec-
tation of the SSF corresponding to the pair of infinite-volume Hamiltonians
(H0⊥, H0⊥ + u0) if we replace ξ(E;HΛ

j⊥ + uj, H
Λ
j⊥) by ξ(E;Hj⊥ + uj, Hj⊥),

where Hj⊥ is the infinite-volume Hamiltonian with ωj = 0. This is the con-
tent of the next proposition.

Theorem 3.1 Let H0⊥ be the infinite-volume random Hamiltonian Hω with
ω0 = 0 and assume hypotheses (H1)-(H4’). Then the SSF ξ(E;H0⊥+u0, H0⊥)
is well-defined and IE{ξ(E;H0⊥ + u0, H0⊥)} ∈ L∞

loc(R).

Proof: 1. We begin with the integrated expression (12) and write

1

|∆|

∫

∆

dE IE







1

|Λ|

∑

j∈Λ̃

ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥)







=
1

|∆|

∫

∆

dE IE







1

|Λ|

∑

j∈Λ̃

ξ(E;Hj⊥ + uj, Hj⊥)







+
EΛ(∆)

|∆|
, (18)
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where the error term is

EΛ(∆) ≡

∫

∆

dE IE







1

|Λ|

∑

j∈Λ̃

(

ξ(E;HΛ
j⊥ + uj, H

Λ
j⊥) − ξ(E;Hj⊥ + uj, Hj⊥)

)







.

(19)
We will prove below that EΛ(∆) → 0 as |Λ| → ∞. Assuming this for the
moment, it follows from the Birkhoff Ergodic Theorem and (18) that

lim
|Λ|→∞

1

|∆|

∫

∆

dE IE







1

|Λ|

∑

j∈Λ̃

ξ(E;Hj⊥ + uj, Hj⊥)







=
1

|∆|

∫

∆

dE IE{ ξ(E;H0⊥ + u0, H0⊥)} ≤ CI <∞. (20)

In order to justify the interchange of the expectation and the infinite-volume
limit, we note that the nonnegative series in brackets on the first line of (20)
converges pointwise a. e. to the integrand on the second line of (20). As the
SSF ξ(E;Hj⊥ + uj, Hj⊥) ∈ L1

loc(R), the term in the brackets on the right
of the first line of (20) is uniformly bounded, so the exchange is justified
by the Lebesgue Dominated Convergence Theorem. We apply the Lebesgue
Differentiation Theorem to the second line of (20), since the SSF is in L1

loc(R),
and obtain the pointwise bound in Theorem 3.1.
2. It remains to prove the vanishing of the error term in (19) in the infinite-
volume limit. Using the identity on the first line of (11), we obtain

EΛ(∆) = IE







1

|Λ|

∑

j∈Λ̃

[

Tru
1/2
j EΛ(∆)u

1/2
j − Tru

1/2
j E(∆)u

1/2
j

]







. (21)

We define a local nonnegative measure κΛ by

κΛ(∆) ≡
1

|Λ|
IE







∑

j∈Λ̃

Tru
1/2
j EΛ(∆)u

1/2
j







, (22)

and the nonnegative measure κ̃Λ, defined similarly but with the spectral
projection E(·) for the infinite-volume Hamiltonian Hω. In terms of these
local measures, we can express the right side of (21) as

EΛ(∆) =
1

|Λ|
[κΛ(∆) − κ̃Λ(∆)]. (23)
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We first prove that the measure EΛ(·) converges vaguely to zero by computing
the Laplace transform of the measure. The Laplace transform L(EΛ)(t) is
easily seen to be given by

L(EΛ)(t) =
1

|Λ|
IE{Tr ṼΛ(e−tHω − e−tHΛ)}. (24)

Using the Feynman-Kac formula for the heat semigroups, for example, one
easily shows, as in [11], that

lim
|Λ|→∞

L(EΛ)(t) = 0, (25)

for t > 0 pointwise, for a reasonable expanding family of regions Λ. This
implies the measure EΛ(·) converges vaguely to zero which, in turn, implies
that the right side of (23) converges to zero. 2

A consequence of this result is an apparently new relationship between
the infinite-volume SSF and the DOS for lattice models. The analogous
relation for continuum models defines a new measure absolutely continuous
with respect to Lebesgue measure and to the DOS measure. These results
follow easily from the proof of Proposition 3.1.

Corollary 3.1 Let ν be the DOS measure for the random Hamiltonian Hω.
For lattice models, for any Borel set A ⊂ R, we have

ν(A) =

∫

A

dE IE{ξ(E;H0⊥ + u0, H0⊥)}. (26)

For continuum models, there is a nonnegative measure κ, absolutely continu-
ous with respect to the DOS measure and Lebesgue measure, with distribution
given in (30), so that

κ(A) =

∫

A

dE IE{ξ(E;H0⊥ + u0, H0⊥)}. (27)

For any closed bounded interval I ⊂ R, there are constants 0 < cI ≤ CI <∞,
so that for any Borel set A ⊂ I, we have

0 ≤ κ(A) ≤ cI |A|, and 0 ≤ κ(A) ≤ CIν(A). (28)

8



Proof: From the Birkhoff Ergodic Theorem, and expression (10), we can
express the integral on the right in (20) in terms of a positive measure κ as
follows

∫

∆

dE IE{ ξ(E;H0⊥ + u0, H0⊥)} = IE



 lim
|Λ|→∞

1

|Λ|

∑

j∈Λ̃

Tru
1/2
j E(∆)u

1/2
j





= IE{Tru
1/2
0 E(∆)u

1/2
0 }

≡ κ(∆), (29)

where κ(·) is the nonnegative measure with distribution function given by

K(E) ≡ IE{Tru
1/2
0 P (E)u

1/2
0 }, (30)

where P (E) is the spectral family for Hω. For the lattice case, this measure
is just the DOS measure, since u0 = δ0, so that IE{ ξ(E;H0⊥ + u0, H0⊥)} is
a representation of the DOS. It follows immediately from (29) and Theorem
3.1 that for any closed bounded interval I ⊂ R, there exists a finite constant
0 < CI <∞, so that for any Lebesgue measurable set A ⊂ I, we have

0 ≤ κ(A) =

∫

A

dE IE{ ξ(E;H0⊥ + u0, H0⊥)} ≤ CI |A|. (31)

Lebesgue measure, It remains to prove that κ is bounded above by the DOS
measure. This implies the absolute continuity with respect to ν. We simply
note that there exists a constant 0 < C0 <∞, depending only on u, so that

0 ≤
∑

j∈Λ̃

Tru
1/2
j EΛ(∆)u

1/2
j ≤ C0 TrEΛ(∆), (32)

and recall the definition of the DOS measure. This implies that 0 ≤ κ(A) ≤
CIν(A), for A ⊂ I ⊂ R. 2.

This measure κ is similar to the DOS measure for continuum models.
The distribution function for the DOS for continuum models is given by
N(E) = IE{TrχΛ1(0)P (E)χΛ1(0)}. The measure κ is equivalent to the DOS
measure ν if the single-site potential satisfies c0χΛ1(0) ≤ u, for some c0 > 0,
and it is equal to ν in the special case that u = χΛ1(0). The equivalence of
measures means that there are constants C0, c0 > 0 so that

c0ν(A) ≤ κ(A) ≤ C0ν(A), (33)

for all Borel subsets A ⊂ R.
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4 Comments

We make three comments on various other results concerning the SSF as-
sociated with random Schrödinger operators that have recently occurred in
the literature related to random Schrödinger operators. For deterministic
Schrödinger operators, pointwise bounds are known only in a few specific
cases, such as finite-rank perturbations (cf. [21, 2] and Theorem 4.3 below)
or perturbations of the Laplacian on L2(Rd) by sufficiently smooth potentials
[19].

4.1 Related Results on the Averaged SSF

Bounds on the Lp-norm of the SSF, for 0 < p ≤ 1, were proved in [7] and
improved in [10]. More recently, Hundertmark, et. al. [9], obtained some new
integral bounds on the SSF that indicate that one cannot expect that, in
general, the SSF is locally bounded. Examples of potential perturbations of
Laplacians for which the SSF diverges at certain energies were constructed by
Kirsch [12, 13]. Raikov and Warzel [17] considered the SSF for the Landau
Hamiltonian (5) and a perturbation by a compactly-supported potential.
They showed that the SSF diverges at the Landau energies.

The averaged SSF is expected to be better behaved. In addition to the
pointwise bounds of Theorems 2.1 and 3.1, Aizenman, et. al. [1] proved an
interesting bound on a spectral shift function related to the ones treated here.
They consider the SSF ξ(t, E) for a pair of Hamiltonians Ht = H0 + tV and
Ht + U , where V and U are nonnegative bounded potentials such that V is
strictly positive on a neighborhood of the support of U . Specifically, for any
δ > 0, we define the set Qδ ≡ {x ∈ Rd | dist(x, supp (U)) < δ}. We then
require that V be strictly positive on Qδ.

Theorem 4.1 For any 0 < s < min(2/d, 1/2), there is a finite positive
constant Cs,δ > 0 so that the SSF ξ(t, E) satisfies the bound

∫ 1

0

|ξ(t, E)|s dt ≤ Cs,δ‖U‖∞(1 + |E −E0| + ‖V ‖∞)2s(d+1), (34)

where E ≥ E0 ≡ inf σ(H0).
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4.2 Spectral Shift Density

Kostrykin and Schrader [14, 15] introduced the spectral shift density (SSD)
that is closely related to the integrated density of states. The SSD is the
density of a measure Ξ obtained by the thermodynamic limit

∫

R

g(λ)dΞ(λ) = lim
|Λ|→∞

∫

R

g(λ)
ξ(E;H0 + χΛVω)

|Λ|
. (35)

Note that the size of the perturbation χΛVω is of order |Λ|. They prove that
the SSD ξ̃(E) is given as

ξ̃(E) = N0(E) −N(E), a. e. E ∈ R, (36)

where N0(E) is the IDS of H0 and N(E) is the IDS of Hω.

4.3 Maximally Dissipative Operators and Finite Rank
Perturbations

J. Schenker (private communication) indicated to us that we can obtain the
following version of the main spectral averaging result of [4]. Let us recall a
main result in the theory of maximally dissipative operators (cf. [16, 20]). A
closed operator A is maximally dissipative if ℑA ≥ 0 and A has no dissipative
extension.

Proposition 4.1 Suppose A is a maximally dissipative operator on a sepa-
rable Hilbert space H. Then, there exists a Hilbert space H̃, containing H as
a subspace, an orthogonal projection P : H̃ → H, and a self-adjoint dilation
L so that for z ∈ C with ℑz < 0,

(A− z)−1 = P (L− z)−1P ∗. (37)

Note that the signs of the imaginary parts in the denominator of the left
side of (37) are the same. Using this result, we are able to replace the weight
function B used in [4] by B1/2. This allows us to give a new proof of a well-
known result on the pointwise bound of the SSF when the perturbation is
finite-rank. The abstract result, corresponding to Theorem 3.1 of [4], is the
following theorem.
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Theorem 4.2 Let A be a maximally dissipative operator and let B ≥ 0 be
a bounded, nonnegative self-adjoint operator on a separable Hilbert space H.
Then, for any φ ∈ H, we have the bound

∑

n∈Z

sup
y∈[0,1]

ℑ〈B1/2φ,
1

A+ (n+ y)B + iB
B1/2φ〉 ≤ 2π‖B‖‖φ‖2. (38)

Proof: Let δ > 0 be a small parameter and set Bδ ≡ B+δ > δ, since B ≥ 0.
As Bδ is bounded and invertible, we can write

〈B
1/2
δ φ,

1

A+ (n + y)Bδ + iBδ
B

1/2
δ φ〉 = 〈φ,

1

B
−1/2
δ AB

−1/2
δ + (n + y) + i

φ〉.

(39)

Since B ≥ 0, and A is maximally dissipative, so is B
−1/2
δ AB

−1/2
δ . Let P and

L be the orthogonal projector and self-adjoint dilation associated with A as
in Proposition 4.1. Let µψL be the spectral measure for L and the vector ψ.
We can write the matrix element in (39) as

〈P ∗φ,
1

L+ (n+ y) + i
P ∗φ〉 =

∫

R

dµP
∗φ

L (s)
1

s+ (n + y) + i
. (40)

We recall a special case of Lemma 3.1 of [4]:

sup
κ∈R

∑

n∈Z

sup
y∈[0,1]

1

(y + n+ κ)2 + 1
≤ 2π. (41)

Taking the imaginary part, we obtain from (40) and (41),

∑

n∈Z

sup
y∈[0,1]

ℑ〈B
1/2
δ φ,

1

A + (n+ y)Bδ + iBδ
B

1/2
δ φ〉

≤

∫

R

dµP
∗φ

L (s) sup
κ∈R

∑

n∈Z

sup
y∈[0,1]

1

(y + n + κ)2 + 1

≤ 2π. (42)

We now take δ → 0 and obtain the result. 2

We apply this result to the following situation. Let B ≥ 0 be a nonneg-
ative finite-rank operator with rank N . Let Hs = H0 + sB be a perturba-
tion of a self-adjoint, lower-semibounded operator H0. We consider the SSF
ξ(E;H1, H0) and recover the well-known result (cf. [21, 2]) that the SSF is
pointwise bounded above by N (we obtain a constant 2π that is not optimal).
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Theorem 4.3 The spectral shift function for the pair of self-adjoint oper-
ators (H1, H0), where 0 ≤ B ≡ H1 − H0 is a finite-rank operator of rank
N <∞ and ‖B‖ < 1, satisfies the bound

0 ≤ ξ(E;H1, H0) ≤ 2πN. (43)

Proof: Let f ∈ C1
0 (R) and consider the formula for the SSF:

Tr(f(H1) − f(H0)) = −

∫

R

f ′(E)ξ(E;H1, H0) dE

=

∫ 1

0

d

ds
Trf(Hs) ds

=

∫ 1

0

ds TrB1/2f ′(Hs)B
1/2

=

N
∑

j=1

∫ 1

0

ds 〈φj, B
1/2f ′(Hs)B

1/2φj〉 (44)

Let Es(·) be the spectral family for Hs. The matrix element in (44) is written
as

〈φj, B
1/2f ′(Hs)B

1/2φj〉 =

∫

R

f ′(λ) d〈B1/2φj, Es(λ)B1/2φj〉

=

∫

R

f ′(λ) dµ
ψj

Hs
(λ), (45)

where ψj ≡ B1/2φj and µ
ψj

Hs
is the corresponding spectral measure for Hs

and ψj . We divide the support of f ′ into p subintervals ∆k and bound the
absolute value of the integral over λ in (45) from above as

∣

∣

∣

∣

∫

R

f ′(λ) dµ
ψj

Hs
(λ)

∣

∣

∣

∣

≤

p
∑

k=1

|f ′(xk)| µ
ψj

Hs
(∆k), xk ∈ ∆k, (46)

so it remains to estimate

µ
ψj

Hs
(∆k) = 〈B1/2φj, Es(∆k)B

1/2φj〉. (47)

As in [3], we have the inequality,

〈φ,Es(∆)φ〉 ≤ (4/π)

∫

∆

dt 〈φ,ℑ(Hs − t− i|∆|)−1φ〉. (48)
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Inserting this into (47), we have

∫

∆k

dt 〈B1/2φj,ℑ(Hs − t− i|∆k|)
−1B1/2φj〉. (49)

Returning to the s integral in (44), and taking |∆k| = ǫ << 1, we divide the
interval [0, 1] into intervals of length ǫ and obtain

∫ 1

0

ds 〈B1/2φj,ℑ(H0 + sB − t− iǫ)−1B1/2φj〉

≤
1

ǫ

Nǫ
∑

m=0

∫ (m+1)ǫ

mǫ

ds 〈B1/2φj,ℑ(K + (s/ǫ)B − iB)−1B1/2φj〉

≤

Nǫ
∑

m=0

∫ 1

0

dy 〈B1/2φj,ℑ(K + (m+ y)B − iB)−1B1/2φj〉, (50)

where K ≡ (1/ǫ)(H0 − t) − i(1−B) and we let s/ǫ = m+ y, with y ∈ [0, 1].
Since we require ‖B‖ < 1, the operator (1−B) > 0 so that ℑK < 0. Hence,
−K is a dissipative operator and ℑ(K + (m+ y)B − iB = ℑK − B < 0.

We now apply Theorem 4.2 to estimate the matrix element in (50). We
obtain

∫ 1

0

ds 〈B1/2φj,ℑ(H0 + sB − t− iǫ)−1B1/2φj〉 ≤ 2π. (51)

This implies that the expectation of (49) is bounded above by 2π|∆k|. Com-
bining this bound with (44)–(45) and recalling the approximation (46), we
obtain

∣

∣

∣

∣

∫

R

f ′(E)ξ(E;H1, H0) dE

∣

∣

∣

∣

≤
N

∑

j=1

p
∑

k=1

|f ′(xk)|

∫ 1

0

ds µ
ψj

Hs
(∆k)

≤ 2πN‖f ′‖1, (52)

which, extending the estimate to any f ∈ L1(R), we conclude that

|ξ(E;H1, H0)| ≤ 2πN, (53)

proving the result. 2
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