High-Dimensional Data Clustering - Archive ouverte HAL
Article Dans Une Revue Computational Statistics and Data Analysis Année : 2007

High-Dimensional Data Clustering

Résumé

Clustering in high-dimensional spaces is a difficult problem which is recurrent in many domains, for example in image analysis. The difficulty is due to the fact that high-dimensional data usually live in different low-dimensional subspaces hidden in the original space. This paper presents a family of Gaussian mixture models designed for high-dimensional data which combine the ideas of dimension reduction and parsimonious modeling. These models give rise to a clustering method based on the Expectation-Maximization algorithm which is called High-Dimensional Data Clustering (HDDC). In order to correctly fit the data, HDDC estimates the specific subspace and the intrinsic dimension of each group. Our experiments on artificial and real datasets show that HDDC outperforms existing methods for clustering high-dimensional data
Fichier principal
Vignette du fichier
RR-1083M.pdf (332.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00022183 , version 1 (04-04-2006)
hal-00022183 , version 2 (18-04-2006)
hal-00022183 , version 3 (21-12-2006)
hal-00022183 , version 4 (04-01-2007)

Identifiants

Citer

Charles Bouveyron, Stéphane Girard, Cordelia Schmid. High-Dimensional Data Clustering. Computational Statistics and Data Analysis, 2007, 52 (1), pp.502-519. ⟨10.1016/j.csda.2007.02.009⟩. ⟨hal-00022183v4⟩
1545 Consultations
3539 Téléchargements

Altmetric

Partager

More