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Abstract

Clustering in high-dimensional spaces is a difficult problem which is recurrent in many
domains, for example in image analysis. The difficulty is due to the fact that high-
dimensional data usually live in different low-dimensional subspaces hidden in the orig-
inal space. This paper presents a family of Gaussian mixture models designed for high-
dimensional data which combine the ideas of subspace clustering and parsimonious
modeling. These models give rise to a clustering method based on the Expectation-
Maximization algorithm which is called High-Dimensional Data Clustering (HDDC).
In order to correctly fit the data, HDDC estimates the specific subspace and the in-
trinsic dimension of each group. Our experiments on artificial and real datasets show
that HDDC outperforms existing methods for clustering high-dimensional data.

Key words: Model-based clustering, subspace clustering, high-dimensional data, Gaus-
sian mixture models, parsimonious models.

1 Introduction

Clustering in high-dimensional spaces is a recurrent problem in many fields of

science, for example in image analysis. Indeed, the data used in image analysis

are often high-dimensional and this penalizes clustering methods. In this paper,

we focus on model based approaches, see [10] for a review on this topic. Popular

clustering methods are based on the Gaussian Mixture Model (GMM) [32] and

show a disappointing behavior when the size of the dataset is too small compared

to the number of parameters to estimate. This well-known phenomenon is called
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curse of dimensionality and was introduced by Bellman [3]. We refer to [35, 36]

for a theoretical study of the effect of dimension in the supervised framework.

To avoid over fitting, it is necessary to find a balance between the number of

parameters to estimate and the generality of the model. We propose a Gaus-

sian mixture model which takes into account the specific subspace around which

each cluster is located and therefore limits the number of parameters to estimate.

The Expectation-Maximization (EM) algorithm [16] is used for parameter esti-

mation and the intrinsic dimension of each group is determined automatically

thanks to the BIC criterion and the scree-test of Cattell. This allows to derive

a robust clustering method in high-dimensional spaces, called High Dimensional

Data Clustering (HDDC). In order to further limit the number of parameters, it

is possible to make additional assumptions on the model. For example, it can

be assumed that classes are spherical in their subspaces or fix some parameters

to be common between classes. The nature of the proposed parametrization al-

lows HDDC to be robust with respect to the ill-conditioning or the singularity

of empirical covariance matrices and to be efficient in terms of computing time.

Finally, HDDC is evaluated and compared to standard clustering methods on

artificial and real datasets.

This paper is organized as follows. Section 2 presents the state of the art on

clustering of high-dimensional data. Section 3 introduces our parameterization

of the Gaussian mixture model. Section 4 presents the clustering method HDDC,

i.e. the estimation of the parameters of the models and of the hyper-parameters.

Experimental results on simulated and real datasets are reported in Section 5.

2 Related work on high-dimensional clustering

Standard methods to overcome the curse of dimensionality consist in reduc-

ing the dimension of the data and/or to use a parsimonious Gaussian mixture

model. More recently, methods which find clusters in different subspaces have

been proposed. In this section, a brief survey of these works in clustering of

high-dimensional data is presented.
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2.1 Dimension reduction

Many methods use global dimension reduction techniques to overcome problems

due to high dimensionality. A widely used solution is to reduce the dimension

of data before using a classical clustering method. Dimension reduction tech-

niques can be divided into techniques for feature extraction and feature selection.

Feature extraction techniques build new variables carrying a large part of the

global information. Among these techniques, the most popular one is Principal

Component Analysis (PCA) [27] which is often used in data mining and image

analysis. However, PCA is a linear technique, i.e. it only takes into account lin-

ear dependences between variables. Recently, many non-linear techniques have

been proposed such as Kernel PCA [40], non-linear PCA [23, 25] and neural net-

works based techniques [15, 28, 39, 44]. In [41], the dimension reduction problem

was considered in the Quadratic Discriminant Analysis framework. In contrast,

feature selection techniques find an appropriate subset of the original variables to

represent the data. A survey on feature selection can be found in [24]. A recent

approach [38] proposes to combine global feature selection and model-based clus-

tering. These global dimension reduction techniques are often advantageous in

terms of performance, but suffer from the drawback of losing information which

could be discriminant. Indeed, the clusters are usually hidden in different sub-

spaces of the original feature space and a global approach cannot capture this.

2.2 Parsimonious models

Another solution is to use models which require the estimation of fewer parame-

ters. For example, the eigenvalue decomposition of the covariance matrices [2, 13]

allows to re-parameterize the covariance matrix of the classes in their eigenspaces.

By fixing some parameters to be common between classes, this parameteriza-

tion yields parsimonious models which generate clustering methods based on the

EM algorithm. A review on parsimonious models can be found in [22]. These

approaches are based on various Gaussian models from the most complex one

(a full covariance matrix for each group) to the simplest one (a spherical co-

variance matrix for all groups) which yields a method similar to the k-means

approach. However, these methods cannot efficiently solve the problem of the

high-dimensionality when clusters live in low-dimensional subspaces.

3



2.3 Subspace clustering

Subspace clustering methods involve two kinds of approaches. On the one hand,

projection pursuit clustering assumes that the class centers are located on a same

unknown subspace [9, 14]. On the other hand, principal component clustering

assumes that each class is located on a unknown specific subspace, see [8], Chap-

ter 17, and [4] for an extension to fuzzy subspaces. For instance, the Analyse fac-

torielle typologique [18] is based on an iterative algorithm similar to the k-means

approach. Some subspace clustering methods use heuristic search techniques to

find the subspaces, see for instance [1]. A review on this type of methods can

be found in [34]. Most of them rely on geometric considerations and are not

model-based. Regression clustering methods (sometimes called switching regres-

sion methods) offer an alternative based on probabilistic models. Some examples

are [17, 37] while the original idea is due to [7]. However, it has been observed

that discarding some dimensions may yield instabilities in presence of outliers or

on small datasets. For this reason, the method proposed in this paper does not

assume that there exist irrelevant dimensions and therefore does not discard any

dimensions, but it models the smallest variances by a single parameter. Methods

based on mixtures of factor analyzers [33, 45] rely on a latent variables model

and on an EM based procedure to cluster high-dimensional data. More recently,

Bocci et al. [6] proposed a similar approach to cluster dissimilarity data. The

model of these methods is a mixture of Gaussian densities where the number of

parameters is controlled through the dimension of the latent factor space. The

advantage of such a model is to capture correlations without estimating full co-

variance matrices and without dimension truncation. In this paper, we propose

an unified approach for subspace clustering in the Gaussian mixture model frame-

work which encompasses these approaches and involves additional regularizations

as in parsimonious models. A precise comparison between our approach and the

mixtures of factor analyzers is achieved in paragraph 3.2.

3 A Gaussian model for high-dimensional data

Clustering divides a given dataset {x1, ..., xn} of n data points in R
p into k ho-

mogeneous groups (see [26] for a review). A popular clustering technique uses
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Gaussian mixture models, which assume that each class is represented by a Gaus-

sian probability density. Data are therefore modeled by a density:

f(x, θ) =

k
∑

i=1

πiφ(x, θi), (1)

where φ is a p-variate normal density with parameter θi = {µi, Σi} and πi are the

mixing proportions. This model requires to estimate full covariance matrices and

therefore the number of parameters increases with the square of the dimension.

However, due to the empty space phenomenon [43] it can be assumed that high-

dimensional data live around subspaces with a dimension lower than the one of the

original space. We therefore introduce low-dimensional class-specific subspaces

in order to limit the number of parameters to estimate.

3.1 The Gaussian model [aijbiQidi]

As in the classical Gaussian mixture model framework, we assume that class con-

ditional densities are Gaussian Np(µi, Σi) with means µi and covariance matrices

Σi, for i = 1, ..., k. Let Qi be the orthogonal matrix with the eigenvectors of Σi

as columns. The class conditional covariance matrix ∆i is therefore defined in

the eigenspace of Σi by:

∆i = Qt
i Σi Qi. (2)

The matrix ∆i is thus a diagonal matrix which contains the eigenvalues of Σi. It

is further assumed that ∆i is divided into two blocks:

∆i =































ai1 0
. . .

0 aidi

0

0

bi 0
. . .

. . .

0 bi









































di























(p − di)

(3)

with aij > bi, j = 1, ..., di, and where di ∈ {1, . . . , p − 1} is unknown. The class

specific subspace Ei is defined as the affine space spanned by the di eigenvectors

associated to the eigenvalues aij and such that µi ∈ Ei. Similarly, the affine
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Figure 1: The subspaces Ei and E
⊥
i of the ith mixture component.

subspace E
⊥
i is such that Ei ⊕ E

⊥
i = R

p and µi ∈ E
⊥
i . In this subspace E

⊥
i , the

variance is modeled by the single parameter bi. Let Pi(x) = Q̃iQ̃i

t
(x−µi)+µi and

P⊥
i (x) = Q̄iQ̄

t
i(x−µi)+µi be the projection of x on Ei and E

⊥
i respectively, where

Q̃i is made of the di first columns of Qi supplemented by (p − di) zero columns

and Q̄i = (Qi − Q̃i). Thus, Ei is called the specific subspace of the ith group

since most of the data live on or near this subspace. In addition, the dimension

di of the subspace Ei can be considered as the instrinsic dimension of the ith

group, i.e. the number of dimensions required to describe the main features of

this group. Figure 1 summarizes these notations. Following the notation system

of [13], our mixture model is denoted by [aijbiQidi] in the sequel.

3.2 The sub-models of [aijbiQidi]

By fixing some parameters to be common within or between classes, we obtain

particular models which correspond to different regularizations. In the following,

“free Qi” means that Qi is specific for each class Ci and “common Qi” means

that for each i = 1, ..., k, Qi = Q and consequently the class orientations are the

same. The family [aijbiQidi] is divided into three categories: models with free

orientations, common orientations and common covariance matrices.
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Models with free orientations They assume that the groups live in subspaces

with different orientations, i.e. the matrices Qi are specific to each group. Clearly,

the general model [aijbiQidi] belongs to this category. Fixing the dimensions di

to be common between the classes yields the model [aijbiQid] which corresponds

to the model of [45]. Indeed, the covariance model given by (2) and (3) can be

rewritten as Σi = BiB
t
i +Di with Di = biIp, Bi = QiTi and where we have defined

Ti =





















√
ai1 − bi 0

. . .

0
√

aidi
− bi

0































di











(p − di)

.

As a consequence, our approach encompasses the mixtures of probabilistic prin-

cipal component analysis introduced in [45] and extended in [33] to more general

matrices Di. In our model, di, the number of columns of Ti, depends on the class.

This permits the modeling of a dependence between the number of factors and the

class. Moreover, as illustrated in paragraph 3.2, our approach can be combined

with a “parsimonious models” strategy to further limit the number of parameters

to estimate. Up to our knowledge, this has not been achieved yet in the mixture

of factor analyzers model. For instance, if we further assume that di = (p − 1)

for all i = 1, ..., k, the model [aijbiQidi] reduces to the classical GMM with full

covariance matrices for each mixture component which yields in the supervised

framework the well known Quadratic Discriminant Analysis. It is possible to add

constraints on the different parameters to obtain more regularized models. Fix-

ing the first di eigenvalues to be common within each class, we obtain the more

restricted model [aibiQidi]. The model [aibiQidi] often gives satisfying results,

i.e. the assumption that each matrix ∆i contains only two different eigenvalues,

ai and bi, seems to be an efficient way to regularize the estimation of ∆i. An-

other type of regularization is to fix the parameters bi to be common between the

classes. This yields the model [aibQidi] which assumes that the variance outside

the class-specific subspaces is common. This can be viewed as modeling the noise

in E
⊥
i by a single parameter b which is natural when the data are obtained in a

common acquisition process. This category of models contains also the models

[abiQidi], [abQidi] and all models with free Qi and common di.
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Models with common orientations It is also possible to assume that the

class orientations are common, i.e. Qi = Q for each i = 1, ..., k. However, this

assumption does not necessarily imply that the class-specific subspaces are the

same. Indeed, if the dimensions di are free, the intersection of the k class-specific

subspaces is the one of the class with the smallest intrinsic dimension. This

assumption can be interesting to model groups with some common properties and

with additional specific characteristics. Several models of this category require a

complex iterative estimation based on the FG algorithm [20] and therefore they

will be not considered here. Consequently, only the models [aibiQd], [abiQd] and

[aibQd] will be considered in this paper since their parameters can be estimated

using a simple iterative procedure. Note that a model similar to [aijbQd] was

considered by Flury et al. in [21] in the supervised framework with an additional

assumption on the means.

Models with common covariance matrices This branch of the family only

includes two models [ajbQd] and [abQd]. Both models indeed assume that the

classes have the same covariance matrix Σ = Q∆Qt. Particularly, fixing d =

(p − 1), the model [ajbQd] reduces to a Gaussian mixture model (denoted by

“Com-GMM” in the following) which yields in the supervised framework the well

known Linear Discriminant Analysis (LDA). Remark that if d < (p−1), the model

[ajbQd] can be viewed as the a combination of a dimension reduction technique

with a GMM with common covariance matrices, but without losing information

since the information carried by the smallest eigenvalues is not discarded.

3.3 Characteristics of the models

Our family of models presented above only requires the estimation of di-dimensional

subspaces and therefore the different models are significantly more parsimonious

than the general Gaussian model if di ≪ p. Table 1 summarizes some properties

of the models considered here. The second column of this table gives the number

of parameters to estimate. The third column provides the asymptotic order of the

number of parameters (i.e. with the assumption that k ≪ d ≪ p). The fourth

column gives the number of parameters for the particular case k = 4, p = 100 and

∀i, di = 10. The last column indicates whether the Maximum Likelihood (ML)
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Model
Number of
parameters

Asymptotic
order

Nb of prms k = 4,
d = 10, p = 100

ML
estimation

[aijbiQidi] ρ + τ̄ + 2k + D kpd 4231 CF
[aijbQidi] ρ + τ̄ + k + D + 1 kpd 4228 CF
[aibiQidi] ρ + τ̄ + 3k kpd 4195 CF
[abiQidi] ρ + τ̄ + 2k + 1 kpd 4192 CF
[aibQidi] ρ + τ̄ + 2k + 1 kpd 4192 CF
[abQidi] ρ + τ̄ + k + 2 kpd 4189 CF
[aijbiQid] ρ + k(τ + d + 1) + 1 kpd 4228 CF
[ajbiQid] ρ + k(τ + 1) + d + 1 kpd 4198 CF
[aijbQid] ρ + k(τ + d) + 2 kpd 4225 CF
[ajbQid] ρ + kτ + d + 2 kpd 4195 CF
[aibiQid] ρ + k(τ + 2) + 1 kpd 4192 CF
[abiQid] ρ + k(τ + 1) + 2 kpd 4189 CF
[aibQid] ρ + k(τ + 1) + 2 kpd 4189 CF
[abQid] ρ + kτ + 3 kpd 4186 CF
[aijbiQdi] ρ + τ + D + 2k pd 1396 FG
[aijbQdi] ρ + τ + D + k + 1 pd 1393 FG
[aibiQdi] ρ + τ + 3k pd 1360 FG
[aibQdi] ρ + τ + 2k + 1 pd 1357 FG
[abiQdi] ρ + τ + 2k + 1 pd 1357 FG
[abQdi] ρ + τ + k + 2 pd 1354 FG
[aijbiQd] ρ + τ + kd + k + 1 pd 1393 FG
[ajbiQd] ρ + τ + k + d + 1 pd 1363 FG
[aijbQd] ρ + τ + kd + 2 pd 1390 FG
[aibiQd] ρ + τ + 2k + 1 pd 1357 IP
[abiQd] ρ + τ + k + 2 pd 1354 IP
[aibQd] ρ + τ + k + 2 pd 1354 IP
[ajbQd] ρ + τ + d + 2 pd 1360 CF
[abQd] ρ + τ + 3 pd 1351 CF
Full-GMM ρ + kp(p + 1)/2 kp2/2 20603 CF
Com-GMM ρ + p(p + 1)/2 p2/2 5453 CF
Diag-GMM ρ + kp 2kp 803 CF
Sphe-GMM ρ + k kp 407 CF

Table 1: Properties of the HDDC models: ρ = kp + k − 1 is the number of
parameters required for the estimation of means and proportions, τ̄ =

∑k

i=1 di[p−
(di + 1)/2] and τ = d[p − (d + 1)/2] are the number of parameters required for
the estimation of Q̃i and Q̃, and D =

∑k

i=1 di. For asymptotic orders, we assume
that k ≪ d ≪ p. CF means that the ML estimates are closed form. IP means
that the ML estimation needs an iterative procedure. FG means that the ML
estimation requires the iterative FG algorithm.
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updates are in closed form or not. These characteristics are also given for five

Gaussian mixture models: GMM with full covariance matrices for each class

(Full-GMM), with common covariance matrices between classes (Com-GMM),

with diagonal covariance matrices (Diag-GMM), with spherical covariance ma-

trices (Sphe-GMM). Note that Celeux and Govaert recommend in [13] to make

use of the models Diag-GMM and Sphe-GMM in clustering problems. We can

observe that all models of our family require the estimation of fewer parameters

than both Full-GMM and Com-GMM. In the particular case of 100-dimensional

data, made of 4 classes and with common intrinsic dimensions di equal to 10, the

model [aijbiQidi] only requires the estimation of 4 231 parameters whereas Full-

GMM and Com-GMM requires respectively the estimation of 20 603 and 5 453

parameters. Remark that the model [aijbiQidi], which gives rise to quadratic

separation between the groups, requires the estimation of fewer parameters than

Com-GMM, which gives rise to linear separation between the groups.

4 High-dimensional data clustering

In this section, we derive the EM-based clustering framework for the model

[aijbiQidi] and its sub-models. The related clustering method is denoted by High-

Dimensional Data Clustering (HDDC). Let us recall that unsupervised classifi-

cation organizes data in homogeneous groups using only the observed values of

the p explanatory variables. Usually, in model-based clustering, the parameters

θ = {π1, ..., πk, θ1, ..., θk} with θi = {µi, Σi} are estimated by the EM algorithm

which repeats iteratively E and M steps. The reader could refer to [31] for fur-

ther informations on the EM algorithm and its extensions. In particular, the

models presented in this paper can be also used in the Classification EM and

Stochastic EM algorithms [12]. Using our parameterization, the EM algorithm

for estimating θ = {πi, µi, Σi, aij , bi, Qi, di} is detailed in the following.

4.1 The E step

This step computes, at iteration q and for each i = 1, ..., k and j = 1, ..., n, the

conditional probability t
(q)
ij = P(xj ∈ C

(q−1)
i |xj) which can be written from (1)
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and using the Bayes formula as follows:

t
(q)
ij = π

(q−1)
i φ(xj , θ

(q−1)
i )

/

k
∑

ℓ=1

π
(q−1)
ℓ φ(xj , θ

(q−1)
ℓ ) .

Note that this conditional probability is mainly based on π
(q−1)
i φ(xj , θ

(q−1)
i ). and

thus can be rewritten using the parameters of the model [aijbiQidi]. In order

not to overload the equations, the index of the current iteration q is omitted in

the remainder of this paragraph. Writing φ(x, θi) with the new class conditional

covariance matrix ∆i, we obtain:

−2 log(φ(x, θi)) = (x − µi)
t(Qi∆iQ

t
i)

−1(x − µi) + log(det ∆i) + p log(2π).

Since Qt
iQi = Ip and Qi = Q̃i + Q̄i, the above matrix inverse can be expanded as

(Qi∆iQ
t
i)

−1 = Q̃i∆
−1
i Q̃t

i + Q̄i∆
−1
i Q̄t

i and thus:

−2 log(φ(x, θi)) = (x − µi)
tQ̃i∆

−1
i Q̃t

i(x − µi) + (x − µi)
tQ̄i∆

−1
i Q̄t

i(x − µi)

+ log(det ∆i) + p log(2π).

Taking into account the structure of ∆i and using the relations Q̃i(Q̃
t
iQ̃i) = Q̃i

and Q̄i

(

Q̄t
iQ̄i

)

= Q̄i, it yields:

−2 log(φ(x, θi)) = ‖Q̃iQ̃
t
i(x−µi)‖2

Ai
+

1

bi

‖Q̄iQ̄
t
i(x−µi)‖2 +log(det ∆i)+p log(2π),

where ‖.‖2
Ai

is the norm on Ei such as ‖x‖2
Ai

= xtAix with Ai = Q̃i∆
−1
i Q̃i

t
. From

the definitions of Pi and P⊥
i (Paragraph 3.1) and in view of Figure 1, we have:

−2 log(φ(x, θi)) = ‖µi − Pi(x)‖2
Ai

+
1

bi

‖x − Pi(x)‖2 + log(det ∆i) + p log(2π).

The relation log(det ∆i) =
∑di

j=1 log(aij)+(p−di) log(bi) allows to conclude that:

tij = 1

/

k
∑

ℓ=1

exp

(

1

2
(Ki(xj) − Kℓ(xj))

)

,

11



where Ki(x) = −2 log(πiφ(x, θi)) is called the cost function and is defined by:

Ki(x) = ‖µi−Pi(x)‖2
Ai

+
1

bi

‖x−Pi(x)‖2 +

di
∑

j=1

log(aij)+(p−di) log(bi)−2 log(πi).

Let us note that Ki(x) is mainly based on two distances: the distance between

the projection of x on Ei and the mean of the class and the distance between

the observation and the subspace Ei. This cost function favors the assignment

of a new observation to the class for which it is close to the subspace and for

which its projection on the class subspace is close to the mean of the class. The

variance terms aij and bi balance the importance of both distances. For example,

if the data are very noisy, i.e. bi is large, it is natural to balance the distance

‖x − Pi(x)‖2 by 1/bi in order to take into account the large variance in E
⊥
i .

4.2 The M step

This step maximizes at iteration q the conditional likelihood and uses the follow-

ing update formulas. Mixture proportions and means are estimated by:

π̂
(q)
i =

n
(q)
i

n
, µ̂

(q)
i =

1

n
(q)
i

n
∑

j=1

t
(q)
ij xj ,

where n
(q)
i =

∑n

j=1 t
(q)
ij . Moreover, the update formula for the empirical covariance

matrix of the fuzzy class Ci is:

W
(q)
i =

1

n
(q)
i

n
∑

j=1

t
(q)
ij (xj − µ̂

(q)
i )(xj − µ̂

(q)
i )t.

The estimation of the specific parameters of HDDC is detailed below. Proofs of

the following results are given in the Appendix.

Models with free orientations The ML estimators of model parameters are

closed form for this category of models.

– Subspace Ei: the di first columns of Qi are estimated by the eigenvectors

associated with the di largest eigenvalues λij of Wi.
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– Model [aijbiQidi]: the estimator of aij is âij = λij and the estimator of bi is the

mean of the (p − di) smallest eigenvalues of Wi and can be written as follows:

b̂i =
1

(p − di)

(

Tr(Wi) −
di
∑

j=1

λij

)

. (4)

– Model [aijbQidi]: the estimator of aij is âij = λij and the estimator of b is:

b̂ =
1

(p − ξ)

(

Tr(W ) −
k
∑

i=1

π̂i

di
∑

j=1

λij

)

, (5)

where ξ =
∑k

i=1 π̂idi and W =
∑k

i=1 π̂iWi is the within-covariance matrix.

– Model [aibiQidi]: the estimator of bi is given by (4) and the estimator of ai is:

âi =
1

di

di
∑

j=1

λij. (6)

– Model [abiQidi]: the estimator of bi is given by (4) and the estimator of a is:

â =
1

ξ

k
∑

i=1

π̂i

di
∑

j=1

λij . (7)

– Model [aibQidi]: estimators of ai and b are respectively given by (6) and (5).

– Model [abQidi]: estimators of a and b are respectively given by (7) and (5).

– Models with common dimensions: the estimators of the models with common

dimensions di can be obtained from the previous ones by replacing the values di

by d for each i = 1, ..., k. In this case, equations (5) and (7) can be simplified as:

â =
1

d

d
∑

j=1

λj, (8)

b̂ =
1

(p − d)

(

Tr(W ) −
d
∑

j=1

λj

)

, (9)

where λj is the jth largest eigenvalue of W .

– Model [ajbiQid]: the estimator of aj is âj = λj and the estimator of bi is (4).

13



– Model [ajbQid]: the estimator of aj is âj = λj and the estimator of b is (9).

Models with common orientations Here, we assume in addition that the

dimensions di are common between classes. The following ML estimators require

an iterative procedure.

– Subspace Ei: Given ai and bi, the d first columns of Q are estimated by the

eigenvectors associated to the d largest eigenvalues of the matrix M defined by:

M(a1, ..., ak, b1, ..., bk) =

k
∑

i=1

ni(
1

bi

− 1

ai

)Wi.

– Model [aibiQd]: given Q, estimators of ai and bi are:

âi(Q) =
1

d

d
∑

j=1

qt
jWiqj , (10)

b̂i(Q) =
1

(p − d)

(

Tr(Wi) −
d
∑

j=1

qt
jWiqj

)

. (11)

– Model [aibQidi]: given Q, the estimator of ai is (10) and the estimator of b is:

b̂(Q) =
1

(p − d)

(

Tr(W ) −
d
∑

j=1

qt
jWqj

)

. (12)

– Model [abiQd]: given Q, the estimator of bi is (11) and the estimator of a is:

â(Q) =
1

d

d
∑

j=1

qt
jWqj . (13)

– Model [aibQd]: given Q, estimators of ai and b are respectively (10) and (12).

For example, it is possible to use the following iterative procedure to estimate

the parameters associated to the model [aibiQd]:

– Initialization: the d first columns of Q(0) are the eigenvectors associated with

the d largest eigenvalues of W .

– Until convergence: a
(ℓ)
i = âi(Q

(ℓ−1)), b
(ℓ)
i = b̂i(Q

(ℓ−1)) and the d first columns

of Q(ℓ) are the eigenvectors associated to the d largest eigenvalues of the matrix
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Figure 2: Estimation of the intrinsic dimension di using the scree-test of Cat-
tell: plot of ordered eigenvalues of Σi (left) and differences between consecutive
eigenvalues (right).

M(a
(ℓ)
1 , ..., a

(ℓ)
k , b

(ℓ)
1 , ..., b

(ℓ)
k ).

Models with common covariance matrices In this category of models, the

parameters can be updated in closed form.

– Subspace Ei: the d first columns of the matrix Q are the eigenvectors associated

to the d largest eigenvalues of W .

– Model [ajbQd]: the estimator of aj is âj = λj and the estimator of b is (9).

– Model [abQd]: estimators of a and b are respectively given by (8) and (9).

4.3 Hyper-parameters estimation

Within the M step, the intrinsic dimensions of each subclass have to be estimated.

This is a difficult problem with no unique technique to use. Our approach is based

on the eigenvalues of the class conditional covariance matrix Σi of the class Ci.

The jth eigenvalue of Σi corresponds to the fraction of the full variance carried by

the jth eigenvector of Σi. The class specific dimension di, i = 1, ..., k is estimated

through the scree-test of Cattell [11] which looks for a break in the eigenvalues

scree. The selected dimension is the one for which the subsequent eigenvalues dif-

ferences are smaller than a threshold. Figure 2 illustrates this method: the graph

on the right shows that the differences between eigenvalues after the fourth one

are smaller than the threshold (dashed line). Thus, in this case, four dimensions
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will be chosen and this corresponds indeed to a break in the scree (left graph). In

our experiments, the threshold is chosen using the probabilistic criterion BIC [42]

which consists in minimizing BIC(m) = −2 log(L) + ν(m) log(n), where ν(m) is

the number of parameters of the model m given in Table 1 for HDDC, L is the

likelihood and n is the number of observations. In addition, this approach al-

lows to estimate k parameters by choosing only the value of the threshold t. In

the case of common intrinsic dimensions between the groups, the dimension d is

directly determined using BIC. The second hyper-parameter to estimate in any

clustering method is the number of groups k. This parameter is also selected

thanks to the BIC criterion, see the experiments presented in Section 5.

4.4 Numerical considerations

First, it is important to remark that the parametrization of the Gaussian model

proposed here provides an explicit expression of Σ−1
i whereas other classical meth-

ods, like Full-GMM and Com-GMM, need to numerically invert empirical covari-

ance matrices which usually fails for singularity reasons. Some solutions however

exist to overcome this problem for the models Full-GMM and Com-GMM, see for

instance [29]. In contrast, this problem does not arise with HDDC since the cost

function Ki does not require to invert Σi. Moreover, it appears in (4.1) that the

cost function Ki does not use the projection on the subspace E
⊥
i and consequently

does not require the computation of the (p−di) latest columns of the orientation

matrix Qi. In Section 4.2, it is shown that the ML estimators of these columns

are the eigenvectors associated to the (p−di) smallest eigenvalues of the empirical

covariance matrix Wi. Therefore, HDDC does not depend on these eigenvectors

whose determination is numerically unstable. Thus, HDDC is robust with re-

spect to ill-conditioning and singularity problems. In addition, it is also possible

to use this feature to reduce computing time by using the Arnoldi method [30]

which only provides the largest eigenvalues and the associated eigenvectors of

an ill-conditioned matrix. During our experiments, we noticed a reduction by

a factor 60 of the computing time on a 1024-dimensional dataset compared to

the classical approach. Furthermore, in the special case where the number of

observations of a group ni is smaller than the dimension p, our parametrization

allows to use a linear algebra trick. Indeed, in this case, it is better from a nu-
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Simulated HDDC model
data model [aijbiQidi] [aijbQidi] [aibiQidi] [aibQidi] [abiQidi] [abQidi]

[aijbiQidi] 357 373 349 359 349 360
[aijbQidi] 403 404 397 396 397 397
[aibiQidi] 389 419 377 391 377 394
[aibQidi] 438 440 419 419 420 420
[abiQidi] 399 433 380 402 384 403
[abQidi] 456 451 428 427 434 433

Table 2: BIC value for the HDDC models on different simulated datasets (the
best ones are in bold).

merical point of view to compute the eigenvectors of the ni × ni matrix ΥiΥ
t
i

than those of the p × p matrix Υt
iΥi, where Υi is the ni × p matrix containing

the mean-centered observations. In the case of data containing 13 observations

in a 1024-dimensional space, it has been noticed a reduction by a factor 500 of

the computing time compared to the classical approach.

5 Experimental results

In this section, we present results for artificial and real datasets illustrating the

main features of HDDC. In the following experiments, HDDC will be compared

to 3 classical Gaussian mixture models: GMM with full covariance matrices for

each class (Full-GMM), with diagonal covariance matrices (Diag-GMM), with

spherical covariance matrices (Sphe-GMM). A numerical regularization was nec-

essary to invert the covariance matrices in the clustering method associated to

the model Full-GMM, so that it is able to work with data of dimension larger

than 50.

5.1 Simulation study: model selection

Given that HDDC is a model-based clustering method, the well-known criterion

BIC can be used for selecting the best adapted model to the data. Here, we used

BIC and the cluster recognition rate to compare the different models of HDDC.

The cluster recognition rate can be computed since true partitions are known

and is defined as the maximum rate over the correct matchings between the true
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Simulated HDDC model
data model [aijbiQidi] [aijbQidi] [aibiQidi] [aibQidi] [abiQidi] [abQidi]

[aijbiQidi] 0.967 0.828 0.973 0.919 0.975 0.903
[aijbQidi] 0.730 0.727 0.779 0.782 0.758 0.751
[aibiQidi] 0.979 0.871 0.983 0.929 0.986 0.917
[aibQidi] 0.826 0.800 0.882 0.863 0.875 0.865
[abiQidi] 0.965 0.825 0.980 0.844 0.952 0.822
[abQidi] 0.712 0.752 0.797 0.793 0.711 0.707

Table 3: Cluster recognition rate for the HDDC models on different simulated
datasets (the best ones are in bold).

groups and the found clusters. It is impossible to report in this section numerical

experiments for all the discussed models. Therefore, we limit ourselves to models

with free orientations since we believe that these models are able to tackle different

situations. We performed extensive simulations (50 replications for each of the

6 data models) and then used the 6 different models with free orientations in

HDDC to cluster the simulated data. For each dataset, 3 Gaussian densities are

simulated in R
100 according to one of the 6 models with free orientations, i.e.

free matrices Qi, and with the following parameters: {d1, d2, d3} = {2, 5, 10},
{π1, π2, π3} = {0.4, 0.3, 0.3} and close means and random matrices Qi. Each one

of the 6 datasets was made of 1000 points. Tables 2 and 3 present respectively

the BIC value and the cluster recognition rate on average for the 6 considered

HDDC models on the different simulated datasets. First of all, it appears that

BIC and the cluster recognition rate select in general the same models and this

confirm that BIC is a useful tool in model-based clustering. Unsurprisingly, the

models used to simulate the data obtain small BIC values and satisfying cluster

recognition rates. However, it appears that the model [aibiQidi] is usually selected

by BIC as the best model and its cluster recognition rates are very good for each

type of simulated data. Thus, the model [aibiQidi] seems to have the right number

of degrees of freedom and the assumption that ∆i has only 2 different eigenvalues

is an efficient way to regularize the estimation. Note that models [aibQidi] and

[abiQidi] are also often selected by BIC and provide good cluster recognition rates.
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Nb of groups k Dimensions di BIC value
2 2,16 414
3 2,5,10 407

4 2,2,5,10 414
5 2,5,5,10,12 416
6 2,5,6,10,10,12 424

Table 4: Selection of the number of groups using BIC with the model [aibiQidi]
of HDDC: data are made of 3 groups with intrinsic dimensions di = {2, 5, 10}.

5.2 Simulation study: hyper-parameters selection

Here, we are interested in the selection of the number of groups and of the

intrinsic dimension of the clusters. In this experiment, 3 Gaussian densities

are simulated in R
100 according to the model [aibiQidi] with the following pa-

rameters: {d1, d2, d3} = {2, 5, 10}, {π1, π2, π3} = {0.4, 0.3, 0.3}, {a1, a2, a3} =

{150, 100, 75}, {b1, b2, b3} = {15, 15, 15}, close means and random matrices Qi.

The dataset was made of 1000 points. Table 4 presents the choices of group in-

trinsic dimensions for the different values of k and the corresponding BIC values.

First of all, it appears that the criterion BIC can be successfully used for choosing

the number of clusters as in standard Gaussian mixture models. Indeed, the BIC

value associated to the model [aibiQidi] are computed for different values of k, the

number of groups, and BIC indicates that the most likely value is k = 3 which is

correct. In addition, the intrinsic dimensions di, estimated by HDDC for k = 3,

are indeed the ones of the simulated data. It is also interesting to observe the

evolution of the estimation of dimensions di according to the number of clusters.

For instance, if we consider the case of a mixture of 2 Gaussian densities, HDDC

seems to correctly fit the first 2-dimensional cluster and create a second cluster

made of the two other real groups. In addition, the estimated dimension of this

second cluster is approximately the sum of the intrinsic dimensions of the two

real groups. Similarly, for k = 4, HDDC divides the first real group into two new

clusters with intrinsic dimensions equal to 2. As a conclusion, our approach for

dimension estimation allows to correctly identify the cluster subspaces.
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Figure 3: Influence of the dimensionality on the BIC value for different Gaussian
mixture models.
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Figure 4: Influence of the dimensionality on cluster recognition rate for different
Gaussian mixture models.
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5.3 Simulation study: influence of the dimensionality

In this paragraph, we highlight the dimensionality effect on the different clus-

tering methods. Three Gaussian densities are simulated in R
p, p = 20, ..., 100,

according to the model [aibiQidi] with the same parameters as in the previous

experiment. The performance of methods is measured by the average cluster

recognition rate computed on 50 replications. The studied clustering methods

were initialized using the same random partition. Figures 3 and 4 respectively

show the influence of the dimensionality on the BIC value and the cluster recog-

nition rate for different Gaussian mixture models: model [aibiQidi] of HDDC,

Full-GMM, Diag-GMM and Sphe-GMM. It is not surprising to observe on Fig-

ure 3 that BIC selects the model [aibiQidi] as the best model since the data are

simulated according to this model. However, it interesting to remark that, the

more the dimension increases, the larger the difference between the BIC values

of the different models is, and that in favor of the model [aibiQidi]. Figure 4

shows that data dimension does not influence the performance of HDDC which

is very close to the performance of the Bayes decision rule (computed with the

true densities). In addition, HDDC provides a cluster recognition rate similar to

Full-GMM in low dimensions. Full-GMM is known to be very sensitive to the

data dimension and, indeed, gives bad results as soon as the dimension increases.

The models Diag-GMM and Sphe-GMM cannot correctly fit the data since they

are too parsimonious for this complex dataset. However, one can observe that

Sphe-GMM is not sensitive to the data dimension whereas Diag-GMM is. To

summarize, HDDC is not sensitive to the dimension and works very well both

in low and in high-dimensional spaces. In addition, the model [aibiQidi] outper-

forms models requiring a higher number of parameters (Full-GMM) and models

requiring a smaller number of parameters (Diag-GMM and Sphe-GMM).

5.4 Simulation study: full rank Gaussian model

In this last simulation study, the capacity of HDDC models to deal with full rank

Gaussian data is investigated. Three Gaussian densities in R
p, p = 50, are simu-

lated with full rank covariance matrices, i.e. according to the model Full-GMM.

The covariance matrices of the groups were different (different orientations and

eigenvalues) but with the same condition number fixed to 100. Recall that the
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Figure 5: Influence of the dataset size on the condition number for the full rank
data.
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condition number of a matrix is the ratio of its largest and smallest eigenvalues.

For this experiment, we used HDDC with the model [aijbiQidi] and the clustering

methods associated to the classical Gaussian models Full-GMM, Diag-GMM and

Sphe-GMM. In order to observe the behavior of the studied clustering methods

with respect to the curse of the dimensionality, the cluster recognition rate is

computed for different dataset sizes n since this phenomenon occurs when the

size of the dataset becomes too small compared to the dimension. As an illus-

tration, Figure 5 presents a comparison between the condition number of the

estimated covariance matrix associated to the first group used by the Full-GMM

method and the ratio â11/b̂1, which is the corresponding condition number of the

covariance matrix estimated by HDDC, for different sizes of the full rank dataset

n = 150, ..., 2000. It appears that, for small datasets (i.e. n smaller than 1000),

the condition number of the empirical covariance matrix (associated to the model

Full-GMM) explodes, whereas the condition number associated to the estimated

covariance matrix in the model [aijbiQidi] remains stable. Figure 6 shows the

consequence on the behavior of the studied clustering methods. First, observe

that both Diag-GMM and Sphe-GMM models do not obtain satisfying results

for any dataset size. This is due to the fact that the assumptions made by those

models are wrong for the simulated data and they are thus not able to correctly

fit these data. Second, HDDC obtains a similar cluster recognition rate to the

model Full-GMM, which is the model used to simulate the data, when the dataset

size is large (i.e. n larger than 1500). Furthermore, HDDC appears to be more

efficient to cluster these data than the model Full-GMM when the dataset size

becomes small. Indeed, the cluster recognition rate of HDDC is almost constant

for dataset sizes between 1500 and 500. However, when the dataset size is smaller

than 500, the HDDC performance decreases to the results obtained by the par-

simonious models Diag-GMM and Sphe-GMM. These experiments demonstrate

that, even with data which are not favorable to our model, HDDC is more efficient

than both complex and parsimonious models on small datasets.

5.5 Real data study: comparison with variable selection

In this experiment, HDDC is compared with the variable selection method for

model-based clustering introduced in [38], and denoted by VS-GMM in the follow-
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Model Variables Cluster recognition rate
Sphe-GMM Original 0.605
VS-GMM Original 0.925

Sphe-GMM Princ. comp. 0.605
VS-GMM Princ. comp. 0.935

HDDC [aibiQidi] Original 0.950

Table 5: Classification results for the Crabs data: comparison of different model-
based clustering methods.
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Figure 7: Clustering results using HDDC: on the left panel, crabs data projected
on the two first principal axes and, on the right panel, clustering result obtained
with the model [aibiQidi] of HDDC and the estimated specific subspaces of the
mixture components (blue lines).
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ing. The authors considered the variable selection problem as a model selection

problem. Selection is made using approximate Bayes factors and combined with

a greedy search algorithm. In addition, it is possible to perform this variable

selection on the original variables, but also on the principal components using

PCA as a pre-processing step. In order to compare HDDC to this variable se-

lection technique, we used the same dataset as in [38]. The Leptograpsus crabs

dataset consists of 200 subjects equally distributed into 4 classes: Orange Male,

Orange Female, Blue Male and Blue Female. There are 5 variables for each sub-

ject: width of frontal lip (FL), rear width (RW), length along the mid-line of the

carapace (CL), maximum of the width of the carapace (CW) and body depth

(BD) in mm. The left panel of Figure 7 shows the Crabs data projected on the

two first principal axes and the big circles represent the cluster means.

Table 5 gives the classification error rate for the classical model Sphe-GMM,

the VS-GMM method and HDDC. The second column of this table indicates on

which variables is performed the clustering. HDDC obtains a cluster recognition

rate equal to 95% and the variable selection method of Raftery et al. obtains

93.5% whereas the classical model Sphe-GMM obtains a cluster recognition rate

equal to 60.5%. HDDC found that each cluster lives in a 1-dimensional subspace

embedded into the original 5-dimensional space. The right panel of Figure 7

shows the specific subspaces (blue lines) of the 4 mixture components obtained

with the model [aibiQidi] of HDDC. For this illustration, the data is projected on

the two first principal components since results obtained with VS-GMM on these

variables are better than on the original ones. It can be observed that the specific

axes of the different clusters are very correlated and this explains that HDDC

provides a better clustering result than the variable selection method VS-GMM.

5.6 Real data study: Martian surface characterization

Here, we propose to use HDDC to analyze and segment images of the Martian

surface. Visible and near infrared imaging spectroscopy is a key remote sensing

technique to study and monitor the system of the planets. Imaging spectrometers,

which are inboard of an increasing number of satellites, provide high-dimensional

hyper-spectral images. In March 2004, the OMEGA instrument (Mars Express,

ESA) [5] has collected 310 Gbytes of raw images. The OMEGA imaging spec-
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Figure 8: Characterization of the Martian surface composition using HDDC: on
the left, image of the studied zone and, on the right, segmentation using HDDC
on the 256-dimensional spectral data associated to the image.

0 50 100 150 200 250
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Spectral band

data1
data2
data3
data4
data5

Figure 9: Spectral means of the 5 mineralogical classes found using HDDC.
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trometer has mapped the Martian surface with a spatial resolution varying be-

tween 300 to 3000 meters depending on spacecraft altitude. It acquires for each

resolved pixel the spectrum from 0.36 to 5.2 µm in 256 contiguous spectral chan-

nels. OMEGA is designed to characterize the composition of surface materials,

discriminating between various classes of silicates, hydrated minerals, oxides and

carbonates, organic frosts and ices. For this experiment, a 300 × 128 image of

the Martian surface is considered and a 256-dimensional spectral observation is

associated to each of the 38 400 pixels. The image of the studied zone is pre-

sented on the left panel of Figure 8. According to the experts, there are k = 5

mineralogical classes to identify.

The right image of Figure 8 shows the segmentation obtained with the model

[aibiQidi] of HDDC. First of all, observe that the segmentation of HDDC is very

precise on the main part of the image. The poor results of the top right part of the

image are due to the planet curvature and could be corrected. In particular, the

experts of the domain appreciated that our method is able to detect a mixture of

ice and carbonate around the ice zones (clear zones of the image). Figure 9 shows

the spectral means of the 5 classes and this allows the experts to determine the

mineralogical and molecular composition of each class. Remind that this study

is done without taking into account the spatial relations between the pixels of

a image. A natural extension of this work is therefore to combine HDDC with

the modeling of the spatial relations using, for example, hidden Markov random

fields. This experiment demonstrates that HDDC can be efficiently used on real

high-dimensional data and with large datasets. In addition, a main interest of

HDDC for this application is to provide posterior probabilities that each pixel

belongs to the classes.

6 Conclusion

In this paper, new Gaussian mixture models designed for high-dimensional data

are introduced. It is assumed that the intrinsic dimension of each mixture compo-

nent is much smaller than the one of the original space. In addition, outside the

specific subspace of each group, the noise variance is modeled by a single parame-

ter. Additional constraints can be imposed on the parameters within or between

27



the groups in order to obtain further regularized models. This parameterization

in the eigenspaces of the mixture components gives rise to an EM-based cluster-

ing method, called High-Dimensional Data Clustering (HDDC). Experiments on

artificial and real datasets demonstrated the effectiveness of the different mod-

els of HDDC compared to classical Gaussian mixture models. In particular, the

model [aibiQidi] provides very satisfying results for many types of data.
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A Appendix: parameters estimation

First of all, we introduce the following useful formulation of the log-likelihood:

− 2 log(L) =
k
∑

i=1

ni

p
∑

j=1

(

log(δij) +
1

δij

qt
ijWiqij

)

+ cst, (14)

where δij is the jth diagonal coefficient of ∆i and qij is the jth column of Qi. We

refer to [19] for a demonstration of this result.

A.1 Models with free orientations

Subspace Ei: The log-likelihood is to be maximized under the constraint qt
ijqij =

1, which is equivalent to finding a saddle point of the Lagrange function:

L = −2 log(L) −
p
∑

j=1

θij(q
t
ijqij − 1),

where θij are the Lagrange multipliers. Using the expression (14) of the log-

likelihood, the gradient of L with respect to qij is:

∇qij
L = 2

ni

δij

Wiqij − 2θijqij ,
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and by multiplying this quantity on the left by qt
ij, we obtain:

qt
ij∇qij

L = 0 ⇔ θij =
ni

δij

qt
ijWiqij .

Consequently, Wiqij =
θijδij

ni
qij and thus qij is the eigenvector of Wi associated

with the eigenvalue λij =
θijδij

ni
= qt

ijWiqij . As the vectors qij are eigenvectors of

the symmetric matrix Wi, this implies that qt
ijqiℓ = 0 if j 6= ℓ. The log-likelihood

can therefore be re-written as follows:

−2 log(L) =

k
∑

i=1

ni

(

di
∑

j=1

(

log(aij) +
λij

aij

)

+

p
∑

j=di+1

(

log(bi) +
λij

bi

)

)

+ cst,

and, using the relation
∑p

j=di+1 λij = Tr(Wi) −
∑di

j=1 λij, we obtain:

−2 log(L) =
k
∑

i=1

ni

(

di
∑

j=1

log(aij) + (p − di) log(bi) +
Tr(Wi)

bi

+

di
∑

j=1

(

1

aij

− 1

bi

)

λij

)

+cst.

(15)

Thus, minimizing −2 log(L) with respect to λij is equivalent to minimizing the

quantity
∑k

i=1 ni

∑di

j=1(
1

aij
− 1

bi
)λij . Since ( 1

aij
− 1

bi
) < 0, ∀j = 1, ..., di, λij must

therefore be as larger as possible. Thus, the column vector qij , ∀j = 1, ..., di, is

estimated by the eigenvector associated to the jth largest eigenvalue of Wi.

Model [aijbiQidi]: starting from equation (15), the partial derivative of−2 log(L)

with respect to aij and bi are:

−2
∂ log(L)

∂aij

= ni

(

1

aij

− λij

a2
ij

)

and −2
∂ log(L)

∂bi

=
ni(p − di)

bi

− ni

b2
i

(

Tr(Wi) −
di
∑

j=1

λij

)

.

The condition ∂ log(L)
∂aij

= 0 implies that âij = λij and the condition ∂ log(L)
∂bi

= 0

implies that:

b̂i =
1

(p − di)

(

Tr(Wi) −
di
∑

j=1

λij

)

.
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Model [aijbQidi]: the partial derivative of −2 log(L) with respect to b is:

−2
∂ log(L)

∂b
=

n(p − ξ)

b
− 1

b2

k
∑

i=1

ni

(

Tr(Wi) −
di
∑

j=1

λij

)

,

and the condition ∂ log(L)
∂b

= 0 proves that:

b̂ =
1

(p − ξ)

(

Tr(W ) −
k
∑

i=1

π̂i

di
∑

j=1

λij

)

.

Model [aibiQidi]: from (15), the partial derivative of −2 log(L) with respect to

ai is:

−2
∂ log(L)

∂ai

=
nidi

ai

− ni

a2
i

di
∑

j=1

λij,

and the condition ∂ log(L)
∂ai

= 0 implies that:

âi =
1

di

di
∑

j=1

λij.

Model [abiQidi]: the partial derivative of −2 log(L) with respect to a is:

−2
∂ log(L)

∂a
=

nξ

a
− 1

a2

k
∑

i=1

ni

di
∑

j=1

λij,

and the condition ∂ log(L)
∂a

= 0 gives:

â =
1

ξ

k
∑

i=1

π̂i

di
∑

j=1

λij .

Model [ajbiQid]: the partial derivative of −2 log(L) with respect to aj is:

−2
∂ log(L)

∂aj

=
n

aj

− 1

a2
j

k
∑

i=1

niλij .

The condition ∂ log(L)
∂aj

= 0 and the relation
∑k

i=1 niλij = nλj imply that âj = λj.
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A.2 Models with common orientations

Subspace Ei: Starting from the likelihood expression (14), we can write:

−2 log(L) =

k
∑

i=1

ni

d
∑

j=1

(

log(ai) +
1

ai

qt
jWiqj

)

+

k
∑

i=1

ni

p
∑

j=d+1

(

log(bi) +
1

bi

qt
jWiqj

)

+ cst,

=

k
∑

i=1

ni (d log(ai) + (p − d) log(bi)) +

d
∑

j=1

qt
jAqj +

p
∑

j=d+1

qt
jBqj + cst,

where A =
∑k

i=1
ni

ai
Wi and B =

∑k

i=1
ni

bi
Wi. Note that

∑p

j=d+1 qt
jBqj can be

written using the trace of B:
∑p

j=d+1 qt
jBqj = Tr(B) −∑d

j=1 qt
jBqj . This yields:

− 2 log(L) =

k
∑

i=1

ni (d log(ai) + (p − d) log(bi)) −
d
∑

j=1

qt
j(B − A)qj + Tr(B) + cst.(16)

Consequently, the gradient of L = −2 log(L) −∑p

j=1 θj(q
t
jqj − 1) with respect to

qj is:

∇qj
L = −2(B − A)qj − 2θjqj ,

where θj is the jth Lagrange multiplier. The relation ∇qj
L = 0 is equivalent to

(B −A)qj = −θjqj which means that qj is eigenvector of the matrix (B −A). In

order to minimize the quantity −2 log(L), the d first columns of Q must be the

eigenvectors associated with the d largest eigenvalues of (B − A).

Model [aibiQd]: Starting from equation (16), the partial derivatives of−2 log(L)

with respect to ai and bi are:

−2
∂ log(L)

∂ai

=
nid

ai

−ni

a2
i

d
∑

j=1

qt
jWiqj and−2

∂ log(L)

∂bi

=
ni(p − d)

bi

−ni

b2
i

(

Tr(Wi) −
d
∑

j=1

qt
jWiqj

)

.

The condition ∂ log(L)
∂ai

= 0 and ∂ log(L)
∂bi

= 0 give respectively:

âi(Q) =
1

d

d
∑

j=1

qt
jWiqj and b̂i(Q) =

1

(p − d)

(

Tr(Wi) −
d
∑

j=1

qt
jWiqj

)

.
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Model [aibQd]: The partial derivative of −2 log(L) with respect to b is:

−2
∂ log(L)

∂b
=

n(p − d)

b
− n

b2

(

Tr(W ) −
d
∑

j=1

qt
jWqj

)

,

and the condition ∂ log(L)
∂b

= 0 implies that:

b̂(Q) =
1

(p − d)

(

Tr(W ) −
d
∑

j=1

qt
jWqj

)

.

Model [abiQd]: The partial derivative of −2 log(L) with respect to a is:

−2
∂ log(L)

∂a
=

nd

a
− n

a2

d
∑

j=1

qt
jWqj ,

and the condition ∂ log(L)
∂a

= 0 proves that:

â(Q) =
1

d

d
∑

j=1

qt
jWqj .

A.3 Models with common covariance matrices

Subspace Ei: The log-likelihood can be written as follows:

−2 log(L) = n

(

d
∑

j=1

log(aj) + (p − d) log(b) +
Tr(W )

b
+

d
∑

j=1

(

1

aj

− 1

b

)

qt
jWqj

)

+cst.

The gradient of L = −2 log(L) −∑p

j=1 θj(q
t
jqj − 1) with respect to qj is:

∇qj
L = 2n(

1

aj

− 1

b
)Wqj − 2θjqj,

where θj is the jth Lagrange multiplier. The relation ∇qj
L = 0 implies that qjis

eigenvector of W . In order to minimize −2 log(L), the first columns of Q must

be the eigenvectors associated to the d largest eigenvalues of W .
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Model [ajbQd]: The partial derivatives of −2 log(L) with respect to aj and b

are:

−2
∂ log(L)

∂aj

=
n

aj

− n

a2
j

qt
jWqj and −2

∂ log(L)

∂b
=

n(p − d)

b
− n

b2

p
∑

j=d+1

qt
jWqj .

The condition ∂ log(L)
∂ai

= 0 implies that âj = λj. The combination of the condition
∂ log(L)

∂b
= 0 with the relation

∑p

j=d+1 λj = Tr(W ) −∑d

j=1 λj gives the estimator

of b:

b̂ =
1

(p − d)

(

Tr(W ) −
d
∑

j=1

λj

)

.

Model [abQd]: The partial derivatives of −2 log(L) with respect to a is:

−2
∂ log(L)

∂a
=

nd

a
− n

a2

d
∑

j=1

qt
jWqj ,

and the condition ∂ log(L)
∂a

= 0 implies that:

â =
1

d

d
∑

j=1

λj.
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