Theorie de Lubin-Tate non-abelienne et representations elliptiques - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Theorie de Lubin-Tate non-abelienne et representations elliptiques

Résumé

Harris and Taylor proved that the supercuspidal part of the cohomology of the Lubin-Tate tower realizes both the local Langlands and Jacquet-Langlands correspondences, as conjectured by Carayol. Recently, Boyer computed the remaining part of the cohomology and exhibited two defects : first, the representations of GL_d which appear are of a very particular and restrictive form ; second, the Langlands correspondence is not realized anymore. In this paper, we study the cohomology complex in a suitable equivariant derived category, and show how it encodes Langlands correspondance for all elliptic representations. Then we transfer this result to the Drinfeld tower via an enhancement of a theorem of Faltings due to Fargues. We deduce that Deligne's weight-monodromy conjecture is true for varieties uniformized by Drinfeld's coverings of his symmetric spaces.
Fichier principal
Vignette du fichier
NALT.pdf (761.87 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00022116 , version 1 (02-04-2006)

Identifiants

Citer

Jean-Francois Dat. Theorie de Lubin-Tate non-abelienne et representations elliptiques. 2006. ⟨hal-00022116⟩
122 Consultations
109 Téléchargements

Altmetric

Partager

More