A relation between the parabolic Chern characters of the de Rham bundles - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

A relation between the parabolic Chern characters of the de Rham bundles

Jaya Iyer
  • Fonction : Auteur
  • PersonId : 832863
Carlos Simpson

Résumé

In this paper, we consider the weight $i$ de Rham--Gauss--Manin bundles on a smooth variety arising from a smooth projective morphism $f:X_U\lrar U$ for $i\geq 0$. We associate to each weight $i$ de Rham bundle, a certain parabolic bundle on $S$ and consider their parabolic Chern characters in the rational Chow groups, for a good compactification $S$ of $U$. We show the triviality of the alternating sum of these parabolic bundles in the (positive degree) rational Chow groups. This removes the hypothesis of semistable reduction in the original result of this kind due to Esnault and Viehweg.
Fichier principal
Vignette du fichier
drbundle6.pdf (461.95 Ko) Télécharger le fichier

Dates et versions

hal-00021918 , version 1 (29-03-2006)
hal-00021918 , version 2 (05-05-2006)

Identifiants

Citer

Jaya Iyer, Carlos Simpson. A relation between the parabolic Chern characters of the de Rham bundles. 2006. ⟨hal-00021918v1⟩
108 Consultations
271 Téléchargements

Altmetric

Partager

More