A zero-one law for first-order logic on random images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2004

A zero-one law for first-order logic on random images

Résumé

For an $n\!\times\! n$ random image with independent pixels, black with probability $p(n)$ and white with probability $1\!-\!p(n)$, the probability of satisfying any given first-order sentence tends to $0$ or $1$, provided both $p(n)n^{\frac{2}{k}}$ and $(1-p(n))n^{\frac{2}{k}}$ tend to $0$ or $+\infty$, for any integer $k$. The result is proved by computing the threshold function for basic local sentences, and applying Gaifman's theorem.
Fichier principal
Vignette du fichier
zuimages.pdf (167.87 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00020672 , version 1 (14-03-2006)

Identifiants

Citer

David Coupier, Agnès Desolneux, Bernard Ycart. A zero-one law for first-order logic on random images. International Colloquium of Mathematics and Computer Science, Sep 2004, Vienne, Austria. pp.495-505, ⟨10.1007/978-3-0348-7915-6_48⟩. ⟨hal-00020672⟩
205 Consultations
190 Téléchargements

Altmetric

Partager

More