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Abstract

For an n×n random image with independent pixels, black with probability p(n)
and white with probability 1−p(n), the probability of satisfying any given first-

order sentence tends to 0 or 1, provided both p(n)n
2
k and (1 − p(n))n

2
k tend to

0 or +∞, for any integer k. The result is proved by computing the threshold
function for basic local sentences, and applying Gaifman’s theorem.

Key words: zero-one law, first-order logic, random image, threshold function.

AMS Subject Classification: 60 F 20

1



1 Introduction

The motivation for this work came for the Gestalt theory of vision (see [3] and references
therein), a basic idea of which is that the human eye focuses first on remarkable or
unusual features of an image, i.e. features that would have a low probability of occurring
if the image were random. Hence the natural question: which properties of a random
image have a low or high probability? Here we shall deal with the simplest model for
random images:

Definition 1.1 Let n be a positive integer. Consider the pixel set Xn = {1, . . . , n}2.
An image of size n×n is a mapping from Xn to {0, 1} (white/black). Their set is
denoted by En. It is endowed with the product of n2 independent copies of the Bernoulli
distribution with parameter p, that will be denoted by µn,p :

∀η ∈ En , µn,p(η) =

n
∏

i,j=1

pη(i,j)(1 − p)1−η(i,j) .

A random image of size n×n and level p, denoted by In,p, is a random element of En
with distribution µn,p.

In other words, a random image of size n×n and level p is a square image in which all
pixels are independent, each being black with probability p or white with probability
1−p.

We shall use the elementary definitions and concepts of first-order logic on finite
models, such as described for instance in Ebbinghaus and Flum [4]. Gaifman’s theorem
([8] and [4] p. 31) shows that first-order sentences are essentially local. They can be
logically reduced to the appearance of fixed subimages (precise definitions will be given
in section 2). Assume p is fixed. Then as n tends to infinity, any given subimage of
fixed size should appear somewhere in the random image In,p, with probability tending
to 1: this is the two dimensional version of the well known “typing monkey” paradox.
It justifies intuitively that the zero-one law should hold for fixed values of p. Our main
result is more general.

Theorem 1.2 Let p(n) be a function from N into [0, 1] such that:

∀k = 1, 2, . . . , lim
n→∞

n
2
k p(n) = 0 or + ∞ and lim

n→∞
n

2
k (1 − p(n)) = 0 or + ∞ .

Let A be a first-order sentence. Then:

lim
n→∞

Prob[ In,p |= A ] = 0 or 1 .

Zero-one laws have a long history (cf. Compton [2] for a review and chapter 3 of [4]).
The first of them was proved independently by Glebskii et al. [9] and Fagin [6]. It
applied to the first-order logic on a finite universe without constraints, and uniform
probability. As an example, interpret the elements of En as directed graphs with vertex
set {1, . . . , n}, by putting an edge between i and j if pixel (i, j) is black. Then In,p
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becomes a random directed graph (or digraph) with edge probability p (see for instance
[11, 12], or [1] for a general reference). As a particular case of the Glebskii et al. –
Fagin theorem, the zero-one law holds for first-order propositions on random digraphs.
However, first-order logic on images is more expressive than on digraphs, since the
geometry of images is not conserved in the graph interpretation.

The theory of random (undirected) graphs was inaugurated by Erdös and Rényi [5]
(see [1, 16] for general references). The zero-one law holds for random graphs with edge
probability p, as a consequence of Oberschelp’s theorem [13] on parametric classes (see
[4] p. 74 or [16] p. 318). At first, zero-one laws were essentially combinatorial, as they
applied to the uniform probability on the set of all structures, corresponding to edge
probability p = 1

2
in the case of graphs. It was soon noticed that they also hold for any

fixed value of p. But it is well known that random graphs become more interesting by
letting p = p(n) tend to 0 as n tends to infinity. A crucial notion for random graphs
is the appearance of given subgraphs ([16] p. 309). The threshold function for the
appearance of a given subgraph in a random graph is p(n) = n− v

e , where v and e are
integers. For p(n) = n− v

e , the probability of appearance for certain subgraphs does not
tend to 0 or 1. Using the extension technique, ([7, 6] and [4] p. 73), Shelah and Spencer
[15] made a complete study of those functions p(n) for which the zero-one law holds for
random graphs, and proved in particular that it does for p(n) = n−α, for any irrational
α. Theorem 1.2 is the analogue for random images of Shelah and Spencer’s result.
To understand why, first notice that the random image model is invariant through
exchanging black and white, together with p and 1−p. Thus we will consider only
functions p(n) tending to 0. We shall define precisely the notion of threshold function

in section 3, and prove that all threshold functions for patterns are of type p(n) = n− 2
k :

the zero-one law does not hold for these values. For instance, if p(n) is small (resp.:
large) compared to n−2, the probability of having at least one black pixel tends to 0
(resp.: 1). But for p(n) = n−2, it tends to 1 − e−1. Theorem 1.2 essentially says that
the zero-one law holds for any function p(n) which is not a threshold function.

It is worth pointing out here that theorem 1.2 can be extended easily to other
random structures, along two different directions. Firstly, we chose to restrict the
study to binary images, using a single unary relation in the language (cf. section 2).
With slight modifications of the proofs, and the values of threshold functions, one could
introduce a finite set of “color” unary relations, allowing for the coding of multilevel
gray or color images. The other possible generalisation concerns the type of graphs.
An image is essentially a colored square lattice. The crucial property of that graph for
our proof is that there exists a fixed number of vertices at fixed distance of any vertex
(ball have bounded cardinality). Our study can easily be extended to any family of
graphs with bounded balls. For instance, theorem 1.2 also holds for a randomly colored
d-dimensional square lattice with nd points, up to replacing n

2
k by n− d

k in its statement.
Section 2 is devoted to first-order logic on images. There we shall discuss basic local

sentences (definition 2.2 and [4] p. 31), and reduce them to combinations of “pattern
sentences” (definition 2.3), showing that a zero-one law holds for all first-order sentences
if it holds for basic local or pattern sentences (proposition 2.4). This will trivially imply
that theorem 1.2 holds for fixed values of p. The section will end with two examples
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of (second-order) sentences whose probability under µn, 1
2

tends to 1
2
.

In section 3, we shall define the notion of threshold function (definition 3.2) and

prove that all threshold functions for basic local sentences are of type n− 2
k (proposition

3.4). Theorem 1.2 easily follows from propositions 2.4 and 3.4.

2 First-order logic for images

We shall follow the notations and definitions in chapter 0 of [4] for the syntax and
semantics of first-order logic. The vocabulary is the set of relations (or predicates).
They apply to the universe (or domain). In our case the universe will be the pixel set
Xn. Image properties will not only be statements on colors of pixels but also about
their geometrical arrangement. Our vocabulary will consist of 1 unary and 4 binary
relations. The unary relation C is interpreted as the color: Cx means that x is a black
pixel and ¬Cx that it is white. Before defining the binary relations, we need a few
considerations on the geometry of Xn.

The pixel set Xn is embedded in Z
2, and naturally endowed with a graph struc-

ture. In image analysis (see for instance chapter 6 of Serra [14]), the cases most often
considered are:

• the 4-connectivity. For i, j > 0, the neighbors of (i, j) are:

(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1) .

• the 8-connectivity. The 4 diagonal neighbors are also included:

(i + 1, j + 1), (i− 1, j + 1), (i+ 1, j − 1), (i− 1, j − 1) .

At this point a few words about the borders are needed. In order to avoid particular
cases (pixels having less than 4 or 8 neighbors), we shall impose a periodic boundary,
deciding for instance that (1, j) is neighbor with (n, j), (n, j−1), and (n, j+1), so that
the graph becomes a regular 2-dimensional torus. Although it may seem somewhat
unnatural for images, without that assumption the zero-one law would fail. Consider
indeed the (first-order) sentence “there exist 4 black pixels each having only one hor-
izontal neighbor”. Without periodic boundary conditions, it applies to the 4 corners,
and the probability for a random image In,p to satisfy it is p4. From now on, the
identification n+ 1 ≡ 1 holds for all operations on pixels.

Once the graph structure is fixed, the relative positions of pixels can be described
by binary predicates. In the case of 4-connectivity 2 binary predicates suffice, U (up)
and R (right): Uxy means that y = x + (0, 1) and Rxy that y = x + (1, 0). In the
case of 8-connectivity, two more predicates must be added, D1 and D2: D1xy means
that y = x + (1, 1) and D2xy that y = x + (1,−1). For convenience reasons, we shall
stick to 8-connectivity. Thus the vocabulary of images is the set {C,U,R,D1, D2}.
Once the universe and the vocabulary are fixed, the structures are particular models
of the relations, applied to variables in the domain. To any structure, a graph is
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naturally associated ([4] p. 26), connecting those pairs of elements {x, y} which are
such that Sxy or Syx are satisfied, where S is any of the binary relations. Of course
only those structures for which the associated graph is the square lattice with diagonals
and periodic boundaries will be called images. As usual, the graph distance d is defined
as the minimal length of a path between two pixels. We shall denote by B(x, r) the
ball of center x and radius r:

B(x, r) = { y ∈ Xn ; d(x, y) ≤ r }

In the case of 8-connectivity, B(x, r) is a square containing (2r + 1)2 pixels.

Formulas such as Cx, Uxy, Rxy. . . are called atoms. The first-order logic ([4] p. 5) is
the set of all formulas obtained by recursively combining first-order formulas, starting
with atoms.

Definition 2.1 The set L1 of first-order formulas is defined by:

1. All atoms belong to L1.

2. If A and B are first-order formulas, then (¬A), (∀xAx) and (A∧B) also belong
to L1.

Here are two examples of first-order formulas:

1. ∀x, y, (Rxy ∧ Uyz) → D1xz,

2. (∃y (Rxy ∧ Uyz)) ↔ D1xz

Notice that any image satisfies them both: adding the two diagonal relations D1 and
D2 does not make the language any more expressive. The only reason why the 8-
connectivity was preferred here is that the corresponding balls are squares.

We are interested in formulas for which it can be decided if they are true or false
for any given image, i.e. for which all variables are quantified. They are called closed
formulas, or sentences. Such a sentence A defines a subset An of En: that of all images
η that satisfy A (η |= A). Its probability for µn,p will still be denoted by µn,p(A).

µn,p(A) = Prob[In,p |= A] =
∑

η|=A

µn,p(η) .

Gaifman’s theorem ([4] p. 31), states that every first-order sentence is equivalent to a
boolean combination of basic local sentences.

Definition 2.2 A basic local sentence has the form:

∃x1 . . .∃xm

(

∧

1≤i<j≤m

d(xi, xj) > 2r

)

∧

(

∧

1≤i≤m

ψi(xi)

)

, (2.1)

where:
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• m and r are fixed nonnegative integers,

• for all i = 1, . . . , m, ψi(x) ∈ L1 is a formula for which only variable x is free (not
bound by a quantifier), and the other variables all belong to the ball B(x, r).

For any x and a fixed radius r, consider now a complete description D(x) of the ball
B(x, r), i.e. a first-order sentence for which all statements concerning pixels at distance
at most r of x are either asserted or negated. There exists a single image ID of size
(2r+1)×(2r+1), centered at x, satisfying it. Thus D(x, r) can be interpreted as: “the
pattern of pixels at distance at most r of x is ID”.

Definition 2.3 A pattern sentence has the form:

∃x1 . . .∃xm

(

∧

1≤i<j≤m

d(xi, xj) > 2r

)

∧

(

∧

1≤i≤m

Di(xi)

)

, (2.2)

where:

• m and r are fixed nonnegative integers,

• for all i = 1, . . . , m, Di(x) is a complete description of the ball B(x, r).

Examples of (interpreted) pattern sentences are:

1. “there exist 3 black pixels”,

2. “there exists a 3×3 white square”,

3. “there exist 3 non overlapping 5×5 white squares with a black pixel on the center”.

Figure 1 gives another illustration. Obviously, pattern sentences are particular cases

Figure 1: Illustration of a pattern sentence, for m = 4 and r = 1.

of basic local sentences. Proposition 2.4 below reduces the proof of zero-one laws for
random images to pattern sentences.
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Proposition 2.4 Consider the following three assertions.

(i) The probability of any pattern sentence tends to 0 or 1.

(ii) The probability of any basic local sentence tends to 0 or 1.

(iii) The probability of any first order sentence tends to 0 or 1.

Then (i) implies (ii) and (ii) implies (iii).

Proof: Observe first that if the probabilities of sentences A and B tend to 0 or 1, then
so do the probabilities of ¬A and A ∧ B. This follows from elementary properties of
probabilities. As a consequence, if the probability of A tends to 0 or 1 for any A in
a given family, this remains true for any finite boolean combination of sentences in
that family. Thus Gaifman’s theorem yields that (ii) implies (iii). We shall prove now
that every basic local sentence is either unsatisfiable or a finite boolean combination
of pattern sentences. Indeed, consider a formula ψ(x) for which only variable x is free,
and the other variables all belong to the ball B(x, r). Either it is not satisfiable, or
there exists a finite set of (2r + 1)×(2r + 1) images (at most 2(2r+1)2) which satisfy it.
To each of these images corresponds a complete description D(x) which implies ψ(x).
So ψ(x) is equivalent to the disjunction of these D(x)’s:

ψ(x) ↔
∨

D(x)→ψ(x)

D(x) . (2.3)

In formula (2.1), one can replace each ψi(xi) by a disjunction of complete descrip-
tions. Rearranging terms, one sees that the basic local sentence (2.1) is itself a finite
disjunction of pattern sentences. �

The zero-one law for fixed values of p is an easy consequence of proposition 2.4. Indeed,
for fixed p, the probability of any pattern sentence tends to 1. To see why, consider
the following sentence:

∃x

(

∧

1≤i≤m

Di(x+ ((i− 1)(2r + 1), 0))

)

, (2.4)

interpreted as: “subimages ID1 , . . . , IDm
appear in m consecutive, horizontally adjacent

balls of radius r”. It clearly implies (2.2). But (2.4) is equivalent to the appearance
of a given subimage on a rectangle of size (2r + 1)× (m(2r + 1)). This occurs in a
random image In,p with probability tending to 1 as n tends to infinity. Thus (2.2) has
a probability tending to one of being satisfied by In,p.

This section ends with two counter-examples of (second-order) sentences the prob-
ability of which does not tend to 0 or 1. The first one is “the number of black pixels is
even”. Its probability is 1

2
(1+(1−2p)n

2
), which tends to 1

2
for any p such that 0 < p < 1.

The second example is more visual. Define a 6-connected path as an m-tuple of pixels
(x1, . . . , xm), such that for i = 1, . . . , m−1, xi+1 ∈ xi ± {(1, 0), (0, 1), (1, 1)}, and the
borders of the image are not crossed (see an illustration on figure 2). Consider now the
two sentences:
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1. BLR: “there exists a 6-connected path of black pixels from left to right”,

2. WTB: “there exists a 6-connected path of white pixels from top to bottom”.

Some geometrical considerations show that an image satisfies BLR if and only if it does
not satisfy WTB (this would not hold for 4- or 8-connected paths: see [14] p. 183).
Take now p = 1

2
. Symmetry implies that µn, 1

2
(BLR) = µn, 1

2
(WTB). Hence both

probabilities must be equal to 1
2
.

The sentences BLR and WTB are examples of those properties studied by perco-
lation theory (see Grimmett [10] for a general reference). Actually the random image
model that we consider here is a finite approximation of site percolation ([10] p. 24).
Using percolation techniques, one can prove that µn,p(BLR) tends to 0 if p < 1

2
, to 1

if p > 1
2
.

Figure 2: A 6-connected path of black pixels from left to right.

3 Threshold functions for basic local sentences

The notions studied in this section have exact counterparts in the theory of random
graphs as presented by Spencer [16]. We begin with the asymptotic probability of single
pattern sentences, which correspond to the appearance of subgraphs ([16] p. 309).

Proposition 3.1 Let r and k be two integers such that 0 < k < (2r + 1)2. Let I be a
fixed (2r + 1)×(2r + 1) image, with k black pixels and h = (2r + 1)2 − k white pixels.
Let D(x) be the complete description of the ball B(x, r) satisfied only by a copy of I,
centered at x. Let D̃ be the sentence (∃x D(x)). Let p = p(n) be a function from N to
[0, 1].

If lim
n→∞

n2p(n)k = 0 then lim
n→∞

µn,p(n)(D̃) = 0 . (3.1)

If lim
n→∞

n2p(n)k(1 − p(n))h = +∞ then lim
n→∞

µn,p(n)(D̃) = 1 . (3.2)
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If lim
n→∞

n2(1 − p(n))h = 0 then lim
n→∞

µn,p(n)(D̃) = 0 . (3.3)

Proof: We already noticed the symmetry of the problem: switching black and white
together with p and 1−p should leave statements unchanged. In particular the proofs
of (3.1) and (3.3) are symmetric, and only the former will be given.

For a given x, the probability of occurence of I in the ball B(x, r) is :

µn,p(n)(D(x)) = p(n)k(1 − p(n))h .

The pattern sentence D̃ is the disjunction of all D(x)’s:

D̃ ↔
∨

x∈Xn

D(x) .

Hence:
µn,p(n)(D̃) ≤ n2p(n)k(1 − p(n))h ,

from which (3.1) follows.
Consider now the following set of pixels:

Tn = { (r + 1 + α(2r + 1), r + 1 + β(2r + 1)) , α, β = 0, . . . , ⌊ n
2r+1

⌋−1 } , (3.4)

where ⌊ · ⌋ denotes the integer part. Call τ(n) the cardinality of T (n):

τ(n) =

⌊

n

2r + 1

⌋2

,

which is of order n2. Notice that the disjunction of D(x)′s for x ∈ Tn implies D̃.

∨

x∈Tn

D(x) → D̃ .

The distance between any two distinct pixels x, y ∈ Tn is larger than 2r, and the balls
B(x, r) and B(y, r) do not overlap. Therefore the events “In,p |= D(x)” for x ∈ Tn are
mutually independent. Thus:

µn,p(n)(D̃) ≥ µn,p(n)

(

∨

x∈Tn

D(x)

)

= 1 −
(

1 − p(n)k(1 − p(n))h
)τ(n)

≥ 1 − exp(−τ(n)p(n)k(1 − p(n))h) ,

hence (3.2). �

Due to the symmetry of the model, we shall consider from now on that p(n) < 1
2
.

Proposition 3.1 shows that the appearance of a given subimage only depends on its
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number of black pixels: if p(n) is small compared to n− 2
k , then no subimage of fixed

size, with k black pixels, should appear in I(n, p(n)). If p(n) is large compared to n− 2
k ,

all subimages with k black pixels should appear. Proposition 3.1 does not cover the
particular cases k = 0 (appearance of a white square) and k = (2r+1)2 (black square).
They are easy to deal with. Denote by W (resp.: B) the pattern sentence (∃x D(x)),
where D(x) denotes the complete description of B(x, r) being all white (resp.: all
black). Then µn,p(n)(W ) always tends to 1 (remember that p(n) < 1

2
). Statements

(3.1) and (3.2) apply to B, with k = (2r + 1)2.

The notion of threshold function is a formalisation of the behaviors that have just
been described.

Definition 3.2 Let A be a sentence. A threshold function for A is a function r(n)
such that:

lim
n→∞

p(n)

r(n)
= 0 implies lim

n→∞
µn,p(n)(A) = 0 ,

and :

lim
n→∞

p(n)

r(n)
= +∞ implies lim

n→∞
µn,p(n)(A) = 1 .

Notice that a threshold function is not unique. For instance if r(n) is a threshold
function for A, then so is cr(n) for any positive constant c. It is costumary to ignore
this and talk about “the” threshold function of A. For instance, the threshold function
for “there exists a black pixel” is n−2.

Proposition 3.1 essentially says that the threshold function for the appearance of a
given subimage I is n− 2

k , where k is the number of black pixels in I. Proposition 3.4

below will show that the threshold function for a basic local sentence L is n− 2
k(L) , where

k(L) is an integer that we call the index of L. Its definition uses the decomposition
(2.3) of a local property into a finite disjunction of complete descriptions, already used
in the proof of proposition 2.4.

Definition 3.3 Let L be the basic local sentence defined by:

∃x1 . . .∃xm

(

∧

1≤i<j≤m

d(xi, xj) > 2r

)

∧

(

∧

1≤i≤m

ψi(xi)

)

.

If L is not satisfiable, then we shall set k(L) = +∞. If L is satisfiable, for each
i = 1, . . . , m, consider the finite set {Di,1, . . . , Di,di

} of those complete descriptions on
the ball B(xi, r) which imply ψi(xi).

ψi(xi) ↔
∨

1≤j≤di

Di,j(xi) .

Each complete description Di,j(xi) corresponds to an image on B(xi, r). Denote by ki,j
its number of black pixels.

The index of L, denoted by k(L) is defined by:

k(L) =
m

max
i=1

di

min
j=1

ki,j . (3.5)
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The intuition behind definition 3.3 is the following. Assume p(n) is small compared

to n− 2
k(L) . Then there exists i such that none of the Di,j(xi) can be satisfied, therefore

there is no xi such that ψi(xi) is satisfied, and L is not satisfied. On the contrary, if

p(n) is large compared to n− 2
k(L) , then for all i = 1, . . . , m, ψi(xi) should be satisfied

for at least one pixel xi, and the probability of satisfying L should be large. In other

words, n− 2
k(L) is the threshold function of L.

Proposition 3.4 Let L be a basic local property, and k(L) be its index. If L is satis-

fiable and k(L) > 0, then its threshold function is n− 2
k(L) . If k(L) = 0, its probability

tends to 1 (for p(n) < 1
2
).

Proof: Assume L is satisfiable (otherwise its probability is null) and k(L) > 0. Let

r(n) = n
− 2

k(L) . For p(n) < 1
2
, we need to prove that µn,p(n) tends to 0 if p(n)/r(n) tends

to 0, and that it tends to 1 if p(n)/r(n) tends to +∞. The former will be proved first.
Consider again the decomposition of L into complete descriptions:

L↔ ∃x1 . . . ∃xm

(

∧

1≤i<j≤m

d(xi, xj) > 2r

)

∧

(

∧

1≤i≤m

∨

1≤j≤di

Di,j(xi)

)

.

If p(n)/r(n) tends to 0, there exists i such that:

∀j = 1, . . . , di , lim
n→∞

n2p(n)ki,j = 0 .

By proposition 3.1, the probability of (∃x Di,j(x)) tends to zero for all j = 1, . . . , di.
Therefore the probability of (∃xψi(x)) tends to 0, which implies that µn,p(n)(L) tends
to 0.

Conversely, for each i = 1, . . . , m, choose one of the Di,j(x)’s, such that the number
of black pixels in the corresponding image is minimal (among all ki,j’s). Denote that
particular description by Di(x). Consider now the following pattern sentence, which
implies L:

∃x1 . . .∃xm

(

∧

1≤i<j≤m

d(xi, xj) > 2r

)

∧

(

∧

1≤i≤m

Di(xi)

)

. (3.6)

As in the proof of proposition 3.1, we shall use the lattice Tn, defined by (3.4). Re-
member that its cardinality τ(n) is of order n2. The pattern sentence (3.6) is implied
by:

∃x1 . . .∃xm

(

∧

1≤i≤m

xi ∈ Tn

)

∧

(

∧

1≤i<j≤m

xi 6= xj

)

∧

(

∧

1≤i≤m

Di(xi)

)

. (3.7)

Assume first that k(L) = 0. Then necessarily, for each i, the image corresponding to
Di(x) has only white pixels. With p(n) < 1

2
, the probability of observing a (2r + 1)×
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(2r + 1) white image is larger than π = 2−(2r+1)2 . Since subimages centered at the
points of Tn are independent, the probability of (3.7) is larger than:

1 −
m−1
∑

l=0

(

τ(n)

l

)

πl(1 − π)τ(n)−l ,

which tends to 1 as n tends to infinity.
Assume now that k(L) > 0. The images corresponding to the minimal descriptions

Di need not be all different: renumber different descriptions Di as D′
1, . . . , D

′
m′ . Let

k(i) be the number of black pixels of D′
i (hence k(L) = max{k(i)}). Let πi(n) be the

probability of D′
i(x), for a given x:

πi(n) = p(n)k(i)(1 − p(n))(2r+1)2−k(i) .

¿From the random image In,p define the random variable Ni as the number of those
pixels xi ∈ Tn such that In,p is described by D′

i(xi) on the ball B(xi, r). Since the
different balls do not overlap, Ni has a binomial distribution, with parameters τ(n)
and πi(n). Assuming p(n)/r(n) tends to +∞, it is easy to check that the product
τ(n)πi(n) also tends to infinity. Therefore the probability that Ni is larger than m
tends to 1, and so does the probability that all the Ni’s are larger than m. But if all
the Ni’s are larger than m, then In,p satisfies (3.7), hence (3.6) and L. �

Having characterized the threshold functions of all basic local properties, the proof
of theorem 1.2 is now clear. If p(n)n

2
k tends to 0 or +∞ for any positive integer k,

then by proposition 3.4 the probability of any basic local sentence tends to 0 or 1.
This remains true for any boolean combination of basic local sentences (cf. proposition
2.4). By Gaifman’s theorem, these boolean combinations cover all first-order sentences.
Hence the zero-one law for first-order logic.
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