Auto-supervised learning in the Bayesian Programming Framework - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Auto-supervised learning in the Bayesian Programming Framework

Résumé

Domestic and real world robotics requires continuous learning of new skills and behaviors to interact with humans. Auto-supervised learning, a compromise between supervised and completely unsupervised learning, consist in relying on previous knowledge to acquire new skills. We propose here to realize auto-supervised learning by exploiting statistical regularities in the sensorimotor space of a robot. In our context, it corresponds to achieve feature selection in a Bayesian programming framework. We compare several feature selection algorithms and validate them on a real robotic experiment.
Fichier principal
Vignette du fichier
dangauthier05icra.pdf (164.13 Ko) Télécharger le fichier

Dates et versions

hal-00019663 , version 1 (14-03-2006)

Identifiants

  • HAL Id : hal-00019663 , version 1

Citer

Pierre Dangauthier, Pierre Bessiere, Anne Spalanzani. Auto-supervised learning in the Bayesian Programming Framework. 2005, pp.1-6. ⟨hal-00019663⟩
207 Consultations
282 Téléchargements

Partager

More