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Abstract— Domestic and real world robotics requires con-
tinuous learning of new skills and behaviors to interact with
humans. Auto-supervised learning, a compromise between
supervised and completely unsupervised learning, consist in
relying on previous knowledge to acquire new skills. We
propose here to realize auto-supervised learning by exploiting
statistical regularities in the sensorimotor space of a robot.
In our context, it corresponds to achieve feature selection in
a Bayesian programming framework. We compare several
feature selection algorithms and validate them on a real
robotic experiment.

Index Terms— Auto-supervised learning, Uncertain Envi-
ronment, Feature Selection, Bayesian Programming, Genetic
Algorithms.

I. INTRODUCTION

In a real environment, a robot needs to continuously
improve its knowledge to interact with humans. It needs
to better the performance of its previously known skills
and to learn new ones. In a complex environment, learning
totally new behaviors probably require human feedback.
But there are simple situations where unsupervised, or
more precisely auto-supervised learning, is possible. We
study in this article the case of a robot which improves
the use of its body without any human supervision. In a
simple tracking task, the robot learns by itself to use its
laser sensor (SICK) instead of its camera. This is done by
searching for correlations in the space of its sensor and
motor variables during the tracking behavior.

A. Auto-supervised learning

Auto-supervised learning is biologically inspired and is
strongly related to mental development [1]. This way of
learning takes place during baby’s development, but also
during adulthood. For instance, a beginner strongly relies
on his sight to use a computer keyboard. Then, he learns to
use his finger sensibility and spatial position to perform the
same task. One can say that he learned a new sensorimotor
behavior thanks to the supervision of his sight.
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This learning is possible by searching, and exploiting
statistical regularities in the sensorimotor space. The ex-
ploitation of statistical regularities can be seen as the
foundation of learning and is a promising model of cogni-
tion [2]. Finding regularities means finding compact data
representations, with which a system becomes able to
generalize and makes sense of its perceptions.

B. Bayesian Robot Programming

Apart from the notion of auto-supervised learning, a
domestic robot perceives abundant, uncertain and often
contradictory information. Sensors and actuators are not
perfectly reliable. Therefore, classical determinist program-
ming has been shown to be unable to address real world
problems [3]. We prefer to use a probabilistic approach
method called Bayesian Programming. Bayesian Robot
Programming is a promising candidate in this context [4]
and has given several interesting results [5] [6]. Moreover,
Bayesian Inference is a promising model for understanding
animal perception and cognition [7].

Bayesian Robot Programming is based on the subjective
interpretation of probabilities deeply described by E.T.
Jaynes [8]. A Bayesian program is a probabilistic repre-
sentation of the relations between sensors and actuators in
order to perform a specified task.

In this framework, a Bayesian programmer starts to
describe a task by specifying preliminary knowledge to
the robot. Then the robot processes Bayesian inference in
order to take a decision regarding its inputs.

Establishing preliminary knowledge can be divided into
three parts:

• Define relevant variables for the problem;
• Possibly assume conditional independencies between

them;
• Choose prior distributions on those variables.
The reader can find detailed examples of non-trivial

Bayesian programs in [5].

C. Goal

In this work, we present an attempt to automate the
creation of a Bayesian program. The “relevant variables”



part of a new program will be autonomously discovered
under the supervision of another Bayesian program.

The initial behavior of the robot is to track a red ball
with a digital camera. This behavior is controlled by an
initial Bayesian program. During a tracking experiment, all
sensor inputs are recorded, including the direction of the
ball. Then, the robot looks for sensors highly correlated
with the position of the ball. After that, the robot builds a
new tracking program with these sensors, and is then able
to stare at the target without its camera.

We present here several algorithms for discovering the
relevant variables related to that simple tracking task.

D. Approach

Once the robot has recorded, for each time step, the
position of the ball given by its camera and all other sensor
values, the problem is reduced to classical supervised
learning. Thus, the goal is to find the minimal set of
variables allowing a good prediction of the position.

Finding relevant variables for good predictions is a well
known problem in the AI field. In our case, the selected
subset of variables will be the input of a naive Bayesian
classifier [9]. This search is therefore called feature selec-
tion for machine learning.

This article presents different feature selection methods
for finding correlations between a variable and the sensor
data. We show that our methods enhance the computing
time and the recognition rate of the classification. A study
of the selected sensors allows us to validate the relevance
of our approach regarding the investigation for new senso-
rimotor modalities.

II. EXPERIMENT

A. Presentation

The problem is as follows: we have a robot with a
lot of different sensors (laser range SICK, proximeters,
thermometer, odometers, battery level...) and a ball is
moving in the horizontal plane. The ball position is defined
by the angle θ between the ball and the robot’s main axe.
A set of learning examples is recorded. For each time step,
we record θ and the related values of all the sensors. After
a learning stage, our robot should be able to guess the
position of the ball knowing its sensor values.

The new constructed Bayesian program will be:
• Relevant variables are sensors carrying information

about θ. We denote sensors variables by Xi, ∀i ∈
[0 . . . N − 1].

• Decomposition: The decomposition of the joint prob-
ability distribution we have chosen is called naive
Bayes model. In our framework, it is reasonable to
assume that sensor values are conditionally indepen-
dent given the value of θ. Thus the decomposition is:

P (X0 . . . XN−1, θ) = P (θ)

N−1
∏

i=0

P (Xi|θ).

• Priors: We choose Laplace’s histograms [8]. Laplace’s
histograms, which are simple histograms with non-
zero values, are frequently used to model discrete
probability distributions.

• Question: Once this program is defined, the goal for
the robot is to infer the position of the ball θ :

θ = Argmax P (θ|X0 . . . XN )

= Argmax
P (X0 . . . XNθ)

P (X0 . . . XN )

= Argmax
N
∏

i=0

P (Xi|θ).

B. Robotics

We carried out our experiments on the BibaBot (see
Fig.1), the robot of the BIBA European project [7]. It is
a middle sized (1 - 0.5 - 0.5 m) wheeled robot equipped
with a lot of different sensors. In this work, the robot stay
motionless.

Fig. 1. The BibaBot Robot.

It is equipped with:
• A Pan-Tilt camera,
• A laser scanner (SICK LMS 200 Fig.2) that scans its

surroundings in 2D. It gives 360 measures of distance
in the horizontal plane. We will consider each laser
beam as an individual sensor.

• 3 odometry sensors,
• 4 bumpers,
• 8 ultrasonic sensors,
• 15 infrared proximity sensors.
• a clock and the battery voltage.
The experiment is then done in three steps:



Fig. 2. A SICK output, when the robot is placed in a corridor

• Firstly the visual tracking program is launched and a
red ball is moving in front of the robot. The program
makes the Pan-Tilt camera follow the ball. Thus, we
can record θ as the angle of the Pan axis. In the same
time we record all the other sensor values.

• Secondly, our feature selection algorithms are
launched off line on the collected data. For a given
algorithm, a subset of relevant sensors is found.

• Finally we launch the new Bayesian program and see
if the robot can guess the position of the ball, or of
another object, without any visual information from
its camera.

The recognition rate of the position determines the quality
of the sensor selection algorithm.

C. Validation criteria

We have different criteria to judge the pertinence of our
sensor selection algorithms. The first one is obviously the
recognition rate of the classification. Is the robot able to
locate the ball with the generated subset of variables? We
have also to take into account the computing cost of feature
selection, which is crucial for embedded mobile robotics.
Another important criterion is the size of the final subset.
We aim at minimizing it, while keeping a good recognition
rate. The recognition rate is not a monotonic function of
the subset size.

Beyond those criteria, we have also to consider the
number and the nature of free parameters in our algorithms.
In a context of autonomy, the part of the programmer
should remain minimal.

III. STATE OF THE ART

Feature selection is an active field in computer science,
especially for data mining. Feature selection for machine
learning consists in finding the “best” subset of features
(sensors for us) for a classification algorithm. Selecting a
subset of features before classifying has several advantages:

• It reduces the dimensionality of the problem allowing
the application of more complex algorithms,

• It leads to a simpler model of data (Occam Razor
argument [10]),

• It enhances the classifier performance, speed and
generality,

• It leads to a more comprehensible model and shows
conditional dependencies between variables.

Usually feature selection algorithms remove independent
or redundant variables.

A. General feature selection structure

It is possible to derive a common architecture from
most of the feature selection algorithms (see Fig. 3). These
algorithms create a subset, evaluate it, and loop until an
ending criterion is satisfied [11]. Finally the subset found
is validated with the classifier algorithm on real data.

Validation

No

EvaluationSubset generation

Stopping 
Criteria

Starting

set

Yes

Fig. 3. General feature selection structure

1) Subset Generation: The subset generation stage is
a search procedure in the space of all subsets. As the
size of this space is 2N , exhaustive search methods are
often helpless. Non deterministic search like evolutionary
search is often used [12] [13]. It is also possible to employ
a heuristic function to build the subsets. There are two
main families of heuristic search methods: forward addition
[14] (starting with an empty subset, we add features after
features by local search) or backward elimination (the
opposite). Ref. [14] presents theoretical arguments in favor
of backward elimination, but experimental results [15]
shows that forward addition and backward elimination
are equivalent. The reader can found in [11] a detailed
nomenclature of feature selection algorithms.

B. Subset Evaluation

A simple method for evaluating a subset is to consider
the performance of the classifier algorithm when it runs
with that subset. This way, the classifier algorithm is
wrapped in the loop, and the method is classified as a
wrapper. On the contrary, filter methods do not rely on
the classifier algorithm, but use other criteria based on
correlation notions.

1) Wrappers: Wrappers have been introduced by John,
Kohavi and Pfleger in 1994 [15]. Usually, subset evalua-
tions are a compromise between the learning performance
and the number of kept features. Thus wrappers generate



well suited subsets for recognition tasks because they
take into account intrinsic bias of the learning algorithm.
Another advantage is their conceptual simplicity. There is
no need to really understand causalities in data, they only
require generating and testing subsets.

But wrappers have several drawbacks. Firstly they do
not clarify conditional dependencies between variables,
providing theoretical justification for keeping this or this
variable. Since selected subsets are specific to a given clas-
sifier algorithm, if it is changed, the selection is not valid
anymore. More important, wrappers are computationally
costly, so this approach may become intractable.

2) Filters: Filters are quicker and based on theoretical
notions. But they often give slightly worse recognition
rates. In order to rank a subset, a naive solution consists
in giving a mark to each variable independently of others,
and to sum those scores. Such a feature ranking method
can be done by evaluating correlation between a variable
and θ. But [16] exposes simple examples showing that this
is clearly insufficient. For instance, this can not eliminate
redundant variables if they are highly correlated with the
target.

In contrast an elegant solution is to consider a subset
as a whole, as done in the structural learning method for
Bayesian networks [17]. In our case, this can be reduced
to the search of Markov blankets [14].

But those theoretical methods are NP-complete and only
approximations are implemented.

For those reasons, intermediate methods based on sta-
tistical analysis [18] have proven their efficiency [19]. The
idea of Ghiselli is to give a good mark to a subset if its
variables are highly correlated with the target, but slightly
correlated between each other. This is summarized in the
following formula:

rθS =
krθi

√

k + k(k − 1)rij

,

where rθS is the score of the subset, rθi is the average
correlation between the k variable and θ, and rij is the
average of the k2 intra-correlations. This formula is an
approximation in the way that we only consider first order
dependencies.

Referring to that method, we need a way to evaluate
correlation between two variables. While linear correlation
used in [20] is clearly inadequate, it is possible to use
classical statistics (like χ2) estimator [21] [22], or an
information based measure. Some authors have explored
pure Bayesian independence tests [23] [24], while others
rely on other notions as consistency [25]. Recent works try
to combine filters and wrappers [16].

C. Stopping criteria and validation

Different kinds of stopping criteria can be used: a
computing time, a number of kept variables, a heuristic
evaluation of the last subset or a recognition rate. In

robotics, this criterion should not be a free parameter, for
ensuring autonomy and plasticity. The validation of the
final subset will be done by calling the learning algorithm.

IV. ALGORITHMS

We have implemented and compared nine different al-
gorithms. Eight of them were recombination of state of the
art methods, and one is original. We quickly present here
the best four algorithms: a filter and a wrapper based on
genetic algorithms (WrappGA and FiltGA), a filter based
on Ghiselli formula (GhiselliFilt) and another filter based
on the conditional independency hypothesis (CondIndFilt).

A. WrappGA

A genetic algorithm generates subsets which are ranked
according to the performance of the classifier algorithms.
It ends as soon as a predefined number of generations has
been computed.

B. FiltGA

In this case the subset fitness is computed thanks to
Ghiselli formula. Correlation between two variables is
estimated in the information theory framework by a cross-
entropy estimator. The Kullback-Leibler (KL) [26] distance
between two probability distributions defines the mutual
information between two variables :

I(Xi, Xj) =
∑

Xi

∑

Xj

P (Xi, Xj)log(
P (Xi, Xj)

P (Xi)P (Xj)
).

This is in fact the KL distance between P (Xi, Xj) and
P (Xi)P (Xj). Therefore the more independent Xi and
Xj , the smaller I(Xi, Xj). Taking into consideration that
I(Xi, Xj) is biased in favor of variables which have lots of
possible values, we can define the uncertain symmetrical
coefficient by:

USC = 2[
I(Xi, Xj)

H(Xi) + H(Xj)
].

Where H(X) is the entropy of X’s distribution. USC

is null for independent variables and equals to 1 when Xi

and Xj are deterministically linked.
This algorithm ends when a predefined number of gen-

erations is computed.

C. GhiselliFilt

GhiselliFilt is basically the same as FiltGA, except that
the search method is no more evolutionary, but it is a
forward addition procedure. We start with an empty set
and we add variables one by one. At each step we add
the variable which maximizes the score of the candidate
subset. The score of a subset is computed with the Ghiselli
heuristic, which takes into account correlations with θ and
inter correlations.

The algorithm ends when it becomes impossible to add
a feature without decreasing the score of the subset.



D. CondIndFilt

In this method, we explicitly consider that sensor vari-
ables are independent knowing the position of the ball.
Several robotic experiments have proven the validity of this
hypothesis. The search procedure is backward elimination.
We start with the complete set of variables, and we try to
remove the less informative features. In order to choose
a variable, we compute the symmetrized KL distance ∆
between two probability distributions.

∆(µ, σ) = DKL(µ, σ) + DKL(σ, µ).

If P is the original distribution, and Pi is the distribution
considering Xi independent of θ, we have:

P (X0 . . . XN−1θ) = P (θ)
N−1
∏

k=0

P (Xk|θ)

Pi(X0 . . . XN−1θ) = P (θ)P (Xi)
N−1
∏

k=0 k 6=i

P (Xk|θ).

Then, we just have to compute, for each candidate
variable

∆(P, Pi) =
∑

θ

P (θ)
∑

Xi

log(
P (Xi)

P (Xi|θ)
)

−(P (Xi) − P (Xi|θ)).

The main drawback is that the algorithm stops when a
predefined number of variables are eliminated.

Remark: we have shown that, under conditional indepen-
dence, the distance relies only on the “difference” between
P (Xi) and P (Xi|θ), e.g. it is not necessary to look at other
variables to decide if a variable is useless.

V. RESULTS

WrappGA FiltGA GiselliFilt CondIndFilt
Comp. Time - - - - + + + + +
Reco. Rate - - - - + + +
#Sensors - - + + + parameter

Free Parameters - - + + - - -

TABLE I
Strengths and weaknesses of different algorithms in the general case.

“Free Parameters” line represents the number of free parameters, and

of the difficulty to choose them.

We have tested our algorithms both on simulated and
robotic data. Here we present the results of the last four
experiments:

• Exp 1. The robot learns when a red ball is moved, and
the new Bayesian program is tested with the same red
ball moved differently.

• Exp 2. The robot learns with a red ball, but the new
program is tested with a wood cube instead of the ball.

• Exp 3. Same as Exp 1., without the SICK sensor.
• Exp 4. Same as Exp 2., without the SICK sensor.
Numerical results for Exp 1. and Exp 2. are presented

in Table II. We can notice that:
• GiselliFilt shows that just 8 laser beams of the SICK

are enough to guess the position of the ball. There are
two reasons for that:

– The SICK is a highly reliable sensor.
– The number of different values chosen during

the discretization of θ was quite low (6 different
classes for 180 degrees);

• Surprisingly recognition rates are not smaller in Exp.2
than in Exp.1. This shows that the ball and the cube
have a similar signature through the kept sensors;

• Algorithms based on genetic algorithms are too slow
to be incorporated in a real time processing;

• WrappGA and FiltGA do not succeed in finding a good
subset. The search space is too huge for them; they do
not find that only a few sensors are required, even with
a lot of generation and a big population. Although in
simulated tests, with a dozen of sensors, they find the
global optimum better than other methods. Thus we
can not use them when too many sensors are used;

• The recognition rate is improved by selecting features.
Indeed making a fusion with non relevant sensors
decreases the performances.

Numerical results without SICK are presented in Table
III. Removing this sensor involves several consequences:

• As the search space drastically shrinks, genetic search
performs better;

• Although the recognition rate among algorithms de-
creases, a good sensor fusion can find the target quite
often;

• Sensors kept in the best subset were mainly I.R.
relevant sensors with a few U.S. telemeter.

The relative values of algorithms are presented in table
I. This study helped us to choose GhiselliFilt as a feature
selection algorithm. The forward addition search procedure
combined with Ghiselli heuristic and an entropic measure
of mutual information is a good candidate for real-time
feature selection. Indeed, Ghiselli formula is an efficient
approximation which highlights sensors highly correlated
with the target but slightly correlated with other sensors.
Moreover mutual information detects more than only tra-
ditional linear correlation.

VI. CONCLUSION AND FURTHER WORK

In this work, we have compared different feature selec-
tion algorithms. We have tested some of them to enable
a robot to discover autonomously correlations in its sen-
sorimotor domain. In our experiments, the robot found a
new way to track a ball, passing from visual to proximity



Experiment WrappGA FiltGA GiselliFilt CondIndFilt ALL
1 #Sensors 196 118 8 8 392

Rec.rate 0.143 0.143 0.8 0.42 0,143
Time 110.5 8.61 3.98 0.72 0,07

2 #Sensors 183 112 8 8 392
Rec.rate 0.14 0.143 1 0.43 0,1432

Time 100.4 8.94 3,92 0,726 0,07

TABLE II
Results of a simple robotic experiment: This table shows that feature selection hugely improves our Bayesian classifier recognition rate.

Experiment WrappGA FiltGA GiselliFilt CondIndFilt ALL
3 #Sensors 14 4 7 8 32

Rec.rate 0.66 0.2 0.55 0.51 0,55
Time 2.73 0.15 0.01 0.006 0,002

4 #Sensors 20 5 7 8 32
Rec.rate 0.40 0.23 0.36 0.38 0,30

Time 2.97 0.16 0.01 0,005 0,002

TABLE III
Same experiments without SICK sensor. One can see that genetic algorithms perform better in this case with a smaller search space.

tracking. In this framework, feature selection drastically
increases performance and speed of the recognition algo-
rithm. This work is a step toward an automatic search of
prior knowledge applied to Bayesian robot programming.

Further work will lead to the integration of the se-
lected algorithm in a permanent auto-supervised learning
framework. This learning process should be real-time and
parallelized.

REFERENCES

[1] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman,
M. Sur, and E. Thelen. Autonomous mental development by robots
and animals. Science, (291):599–600, Jan 2001.

[2] H Barlow. The exploitation of regularities in the environment by
the brain. Behavioral and Brain Sciences, 24(3):602–607, 2001.

[3] Pierre Bessière, Eric Dedieu, Olivier Lebeltel, Emmanuel Mazer, and
Kamel Mekhnacha. Interprétation ou description (i) : Proposition
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