Error estimates for the convergence of a finite volume discretization of convection-diffusion equations - Archive ouverte HAL
Article Dans Une Revue Journal of Numerical Mathematics Année : 2003

Error estimates for the convergence of a finite volume discretization of convection-diffusion equations

Résumé

We study error estimates for a finite volume discretization of an elliptic equation. We prove that, for $s\\in [0,1]$, if the exact solution belongs to $H^{1+s}$ and the right-hand side is $f+\\div(G)$ with $f\\in L^2$ and $G\\in (H^s)^N$, then the solution of the finite volume scheme converges in discrete $H^1$-norm to the exact solution, with a rate of convergence of order $h^s$ (where $h$ is the size of the mesh).
Fichier principal
Vignette du fichier
droniou-jnm.pdf (209.69 Ko) Télécharger le fichier

Dates et versions

hal-00018749 , version 1 (08-02-2006)

Identifiants

Citer

Jerome Droniou. Error estimates for the convergence of a finite volume discretization of convection-diffusion equations. Journal of Numerical Mathematics, 2003, 11 (1), pp.1-32. ⟨10.1515/156939503322004873⟩. ⟨hal-00018749⟩
78 Consultations
298 Téléchargements

Altmetric

Partager

More