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Abstract — We study error estimates for a finite volume discretizatiéran elliptic equation. We
prove that, fors € [0,1], if the exact solution belongs t81+S and the right-hand side i+ div(G)
with f € L2 andG € (HS)N, then the solution of the finite volume scheme convergessorelteH -
norm to the exact solution, with a rate of convergence of ohéwhereh is the size of the mesh).
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1. INTRODUCTION

1.1. The problem

Let Q be a polygonal open subset BN (N = 2 or 3). We study a finite volume
discretization of

{ —Au+div(va) + bt = f +div(G) inQ, (1.1)

u=0 onodQ

wherev € (C(Q))N, b € L*(Q) is nonnegativef € L?(Q) andG € (H3(Q))N with
se [0,1] (if s=0,H%(Q) is to be understood dg(Q)).

The solution to (1.1) is taken in a weak sense as in [6], thiat 8yt € Hg (Q)
and the partial differential equation is satisfied in therthstional sense.

Finite volume methods have been widely used to approxinieesolutions of
convection-diffusion equations (see e.g. [9], [10], [8].The convergence of the
approximations is well-known (see e.qg. [9] (Theorem 9.hyj some error estimates
in theH? framework have been obtained in [10] (Theorem 3.2).

These schemes have mainly been considered when the rigtitside of the el-
liptic equation belongs tb?(Q) (i.e. G= 0in (1.1)); but, recently, [8] has presented
a finite volume scheme capable of handling (1.1) with @ny (L2(Q))N. The case
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G e (HY(Q))N being (roughly speaking) thHe? framework studied in [10], it seems
natural to hope, via interpolation techniques, for errdineates wherG belongs to
intermediate spaces betweet{Q) andH(Q) (these estimates are well-known for
the finite element methods, see for example [3] (Theoren).BNeg prove here such
error estimates, thus filling a gap between finite volume watrand finite element
methods.

It can be interesting to notice that, in the c&se- 2 and for “finite volume ele-
ment” schemes (which are somewhat a mixing between the &hlétaent methods
and the finite volume methods, and are different from the amegpresent here),
some error estimates in thél*S framework have been obtained in [5] (Theorem
4.1, p. 176), whes €]1/2,1].

We also emphasize on a noticeable feature of (1.1): its wencwvity. It is not
supposed tha%div(v) + b > 0, so that the bilinear form associated to (1.1) may be
non-coercive. However, under the sole hypotheses stated(&fl), existence and
uniqueness of a solution to this equation is known (see [Bffem 2.1)). Tha
priori estimates on this equation and its discretization are haodebtain than in
the coercive case, but the techniques that give such estnaa¢ now well-known
(see [6], [8]).

In the following subsection, we present the finite volumeescl used to dis-
cretize (1.1); this scheme is in fact a simplified versionha& bne presented in [8]
(simplified because we take into account the additionallegigy we have orv with
respect to [8]). In Section 2, we state the main result canogrestimates on the
difference between the approximate solution and the exdigtien; notice that we
have to use a different discretization of the exact solutiam in [10], because we
do not only intend to study the case when this solution beddngi?(Q), but also
when it belongs tH*+S(Q) for s € [0,1]; hence we cannot, in contrary to [10],
discretize the solution by taking its values on points. lctea 3, we study the
case when the solution belongsHIé; in this case, the “error estimate” reduces to a
bound inﬁ(lg. In Section 4, we prove &(h) convergence when the exact solution
belongs toH?(Q) and G belongs to(H(Q))N; note that, since our discretization
of the solution is not the same as in [10], we cannot direafegrrto this paper and
we must re-make the whole work (moreover, our scheme isrdifteto the one pre-
sented in [10], because of the presenc&fin particular, it appears through this
study that the way we discretize the solution is crucial ttambgood error esti-
mates. In Section 5, we use the results of Sections 3 andoBsectito prove, via
interpolation results, the theorem stated in Section 2ti@e6 presents some nu-
merical results, and Section 7 is an appendix which gatlfmregsechnical lemmas
useful throughout the paper.

1.2. Definition of the scheme

We use meshes @1 similar to the ones presented in [9].

Definition 1.1. An admissible mesl¥” of Q is a finite family of polygonal open
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convex subsets d@ (the “control volumes”), together with a finite famil§ of dis-
joint subsets oK) consisting in non-empty open convex subsets of affine hyper-
planes (the “edges”) and a family’ = (xx ke Of points inQ such that

) Q=Ukes K,
ii) eacho € & is contained irdK for someK € .7,
i) by denotingék ={o0e€ & |0 CIK},IK=Ugeg 0 forallK e .7,

iv) for all K # L in 7, either the(N — 1)-dimensional measure &L is null,
or KNL =0 for someo € &, that we denote thea = K|L,

v) forallK € 7, x¢ € K,
vi) forall o =K]|L € &, the line(xx,X ) intersects and is orthogonal tn

vii) for all 0 € &, 0 C QN JK, the line which is orthogonal to and going
throughxk intersectso.

If K € .7, hg denotes the diameter &f; the size of7 ishz = sup. » hk. The
unit normal too € &k outward toK is denoted by .

We defineéiy = {0 € & | 0 ¢ dQ} (interior edges) an@exi = &\ &int. We
denote bym the (N — 1)-dimensional measure on the edges of the mesh so that, if
o € &, m(o) is the (N — 1)-dimensional measure af. If 0 = K|L € &, dg IS
the Euclidean distance between the poif¥s,x ) anddk s denotes the distance
betweernxk ando; if 0 € &exiN &k, dg = dk ¢ IS the distance betwee ando.

If K e .7 ando € &k, the “half-diamond”/x ¢ is defined by \« o = {txx +
(1-t)x, t €]0,1], x€ o} (the convex hull of{xk } U 0). We notice thatAk o| =
m(o)dk o /N (wWhere| - | denotes the Lebesgue measur&i}y.

We also make the following hypotheses on the meshes:

3¢ > O such thavK € .7, dk ¢ > {d;, (1.2)
Ja > 0 such thavK € .7, B(xx,ohg) C K, (1.3)
M > 0 such thavK € .7, card 6k) < M (1.4)

(B(x,n) denotes the ball of centgrand radiusy).

Hypothesis (1.2) is classical when discrete Sobolev inidgs are needed.
These inequalities are useful apriori estimates on the scheme (to control the
convective term of the equation), which appear in [8] or Hére, we will directly
use the results of [7], hence the need for (1.2) will not beigga Notice that ifv =0
(or v is regular and div) > 0), then Hypothesis (1.2) can be dropped.

(1.3) and (1.4) appear in [9] for the same kind of results thatpresent here
(see Remarks 3.1 and 4.3).



4 J. Droniou

Remark 1.1. As an example of admissible meshes, we can take regularomifo
meshes as in Section 6, but also triangular meshes (protid¢dll angles of the
triangles are less tham/2 — this can be relaxed, see Example 9.1 in [9]) and most
of Vorono i meshes (see Example 9.2 in [9]).

The finite volume discretization is obtained by an integratf the equation on
a control volumeK: with some integrates by parts, we formally obtain

g g JK

oE€ék gcék
- /f+ S [ Gnkodm
K ogcék’9

To discretize this equation, we define, ¥ .7 ando € &k,

VKo = (%/Uv(f)dm(g)) ko, be= ‘%/Kb(x)dx,

1
f:—/fxdx and G :(7 Gxdx>-n ,
TR o= Bl Jue, S P Mee

which are approximate values vfng ; andG- ng o on o, and ofb and f onK.
Then, lettingukx andug be approximate values GfonK anda, the finite volume
discretization of (1.1) is written

vKe T, ; Fc.o + Z M(0)Vk oUg + + |K|bk Uk
agcdk agcdk

15
= |K|fx + z m(o)CGk o , (1.5)
g€k
VK e T Voe bk, Fro= 22Uy k), (1.6)
Vo = K“_ S (O((int, FK70' - m(O-)GK,U = _(FL,O' - m(O-)GLﬁ')’ (1 7)
VO € Gext Ug =0, '
VU - K‘L € éaintu u0'7+ = uK If VK7O' 2 07 u0'7+ = U|_ OtherWISe7 (1 8)

VO € extNék, Ugy =Uk if ko >0, Ugs4 =0 otherwise

(ko is of course a discretization ef [; Ou-nk cdm).

Remark 1.2. (1.8) is a classical upwind choice of the discretizationhef ¢ton-
vection term diyvu) (see [9], p. 766). This choice brings stability to the scheme
and allows unconditionah priori estimates (see [7] (Proposition 3.2, p. 72)); no-
tice however that, since our problem is non-coercive (ile(\ is not supposed
nonnegative), the maximum principle on the scheme (1.5)8)({% not known.
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The scheme (1.5)—(1.8) is not exactly the same as in [8],usesehas not been
discretized the same way. In fact, in [8]js less regular, so it must be discretized
using mean values ofik o, Not onag; to obtain error estimates, we must assume
here thatv is more regular than in [8], so it seems more natural (andeeqssince
the regularity ofv allows it, to consider mean valueswbn o rather tham\x .

In fact, the unknowngug)gces in (1.5)—(1.8) can be immediately eliminated
thanks to (1.7), and (1.5)—(1.8) reduces thus to a systemuwmiknownsux )kec 7,
which reads

vKe T, Z do) (uk —up) + Zm(a)vKng7++\K|bKuK

d d
“ K+ 3 m <MGKU ;“GL,U) (1.9)
g

(whereo =K|L if 0 € &k Né&nt and
u. —dL’U = GL’o' =0ifoc gKﬂgext)y

Vo =K|L € &n, Uy =Uk if ko >0, Ug4 =u_ otherwise,

VO € EextNék, Ugy =Uk if Vkg >0, U =0 otherwise. (1.10)

A priori estimates on (1.9)—(1.10) are then direct conseqgas of Proposition 3.2,
p.72, in [7] (see (3.5) in the proof of Corollary 3.1 belowhése estimates show
that the linear system (1.9)—(1.10) is invertible and thhet there exists a unique
solution (uk )k 7 to this system.

Remark 1.3. In [12], some non-coercive problems are also handled from-a n
merical point of view. However, the scheme used (namely @d-ifolume Element
scheme) is not a Finite Volume scheme as the one we presentamet the regular-
ity on the datasy and the mesh) are quite stronger. Moreover, in this referetine
existence of a solution to the Finite Volume Element schesnebiained only for
hs small enough.

2. STATEMENT OF THE MAIN RESULT

The discretizatioi > = (Uk )ke.# Of the exact solutio on an admissible mesi
is defined by

VKe T,k = U(x)dx (2.1)

|B(xx,ahg)| ./B(xK,ahK)

A more natural way to discretize the exact solution woulchpes be to take the
mean value ofi on each celK. This is not a problem when handling thE* case
(see Remark 3.1), but such a discretization would lead tocbadtitency errors in
theH? case (see Remark 4.1).

If .7 is an admissible mesh, we identify the elemems)kc» € RE@47) to
functionsvs defined a.e. o2 and constant on each céll € .7. We denote by
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X(7) this space of functions, and it is endowed with the discketenorm (which
is a natural norm when considering Finite Volume discreitires of elliptic equa-

tions):
1/2
Da T 2)

whereDgyVvy = |k — V| if 0 =K]|L € &t andDgVy = || if 0 € &k N Eext.
In the sequel, all the estimates will be made through thisnnad¥otice that
I lz2(@) < diam(Q)]| - [|1,7 onX(.7) (see [9] (Lemma 9.1) for a proof of this), so

that an estlmate iX(.7) gives a similar estimate in?(Q).

Voo = ( 2 4

oes U

The main result of this paper is the following theorem.

Theorem 2.1. We suppose that N- 2 or that Q is convex; we also assume
that div(v) € L?(Q). Let se [0,1] and .7 be an admissible mesh which satis-
fies Hypothesegl.2), (1.3) and (1.4). Then there exists C only depending on
(Q, V[l (L=(@yns |10l|L=(), ¢, a,M) such that, if Ge (H(Q))N and if the solution
U to (1.1) belongs to HS(Q), we have

107 = Uzl <C (I1Tlhsss() + 18l s +11Tlliz@y ) hr®

wherets = (Uk ke is defined by(2.1) and uy = (Uk ke is the solution to

(1.9)<1.10)

Remark 2.1. The hypothesesN = 2 or Q is convex” and “difv) € L2(Q)"
are technical hypotheses useful to identify interpolatspaces (see the proof of
Theorem 2.1 and Subsection 7.2). In fact, we believe thaethgpotheses are not
necessary to compute the interpolation spaces that appear ivork, but we have
found no result in interpolation literature that allows &t gd of them (for example,
to be able to handle non-convex polygonal open sets in dioers we use [2]
whose generalization td = 3 does not seem easy at all).

It is also to be noticed that these hypotheses are useless If (see Theorem
4.1).

Remark 2.2. Notice that, with our hypothese®, can be a non-convex polyg-
onal open set oR?, so that assumin@ € (H5(Q))N does not necessarily implies
ucHS(Q).

3. THE H! FRAMEWORK

Proposition 3.1. If .7 is an admissible mesh which satisfies Hypoth€se3)
and(1.4), there exists C only depending @M, a,M) such that

[Uz[l17 < CllUllyyq)
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Remark 3.1. In [9] (Lemma 9.4), a similar result is proved (also using Hy-
potheses (1.3) and (1.4)) witlx replaced by the mean value@bnK.

Proof of Proposition 3.1. LetK € 7 ando € k. We have

' IB(XK,lahK)I /B<xK7ahK>U(X)dX_ ﬁ/o—u(g)dm(é)'

1 1
- u(x dx—i/ u(y)d
‘|B<xK,ahK>\./B<xK,ahK> )8 TR ol a0 y‘

wdy- s | U(E)dm(f)‘ (3.1)

SinceB(xk, ahg ) and/x s are both contained iK which is convex and has
diameterhk, Lemma 7.1 in the Appendix allows to write

' ‘AK,U‘ . AK,o

2

1
S — u(x)dx— uy)d
‘|B<xK,ahK>|/B<x.<,ahK> Vo A

< ClhE—i-z
IB(Xx, ahi) || Ak o JeoB(x.ahk )ik o)

Czh /
[u(z)|-dz
Dol 7@

|0u(2)[>dz

with C; andC; only depending or{N, a). Using this inequality and Lemma 7.2
(from the Appendix) in (3.1), we obtain

1 3 1 - >
‘M/EB(XK,ahK)U(X)dX_M/ u(f)dm(f)

Cah?
|A3KZ\ / Tuz)?dz (3.2)

whereCs only depends ofiN, a).

Let 0 € &uxt. Sinceu e HO( ), (3.2) shows that, denoting ¢ the cell such

thato € &, (Dgli7)% < °3“K‘ Ji |00(x)[2dx We havel Ak o| = m(0)dy /N (recall

thatdk o = dy sinceo € &ex); moreover, by Hypothesis (1.3xhk < dk ¢ = do;
thus,

m(o)
do

(DolU7)? < NC?’hK/\D X)[2dx < 23/K\DU(X)|2dx (3.3
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Let o =K|L € &ni. We have

_ 1 _ 1 _
DoUs 'm/(xK7ahK)U(X)dx_M/UU(E)dm(E)'
1 1 _
ey J, U MO — e [ X

and (3.2) gives thus

h
(Dol7)? < |2§3 |/|Du |2dx+ 203h /|Du ()2 dx
K,o

We have| Ak ¢| = m(0)dk ¢/N andds > dk ¢ > ahk (and the same properties
with K replaced byt), so that

mc(j:)(Dg o 2N </ a0 2+ [ 100 dx> (3.4)

(3.3) and (3.4) show that, for att € &,

0o07?<Ce Y [ |oupofdx
Keo | oedk

with C4 only depending oriN, o). Summing these inequalities anc &, we find

s> <Cey Y [I0uPdx<Cs Y [ 000 dxcard )

gcEKeT | oebk K Keo

and (1.4) concludes the proof of the proposition. O

Corollary 3.1. Assume that7 is an admissible mesh which satisfies (1.2), (1.3)
and (1.4). There exist only depending ofQ, ||V||L=(q)n, {, o, M) such that, ifu
is the variational solution to (1.1}i» is defined by (2.1) and» = (uk )kec .7 is the
solution to (1.9)—(1.10), then

07 = uzllrz < CUUlluy ) + [ flla) + I11GllL2@)-

Remark 3.2. By Theorem 2.1 in [6],|\U|\H&(Q) is controlled by/||f|[ 2q) +
|11G]||L2(q) and we could thus drop it in the preceding inequality.
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Proof of Corollary 3.1. The right-hand side of (1.9) is written
Klfk+ ¥ m(0)Qk.o

océk

with (Qk ¢ )ke7, oe4 Which satisfies, for alb = K|L € &int, Q.0 = —QL ¢ (con-
servativity); thus, by Proposition 3.2, p.72, in [7], thesdstsC, only depending on
(Q, [[V[l(L=(yn, ¢) such that

1/2 1/2
Uzl <C1< > |K|f}%> +C ( > m(o daQ2> (3.5)

Keo ges&

whereQgs = |Qk ¢| for someK € .7 such thaio € &k (by conservativity, this defi-
nition of Qs does not depend on the choice of sudk)a

Since|Ak ¢| =m(0)dk ¢/N for all K € 7 ando € &k, we have, by convexity
of X — X2 and for allo = K|L € &,

d 1 d 1
2 < KO = G(x)Pdx+ —2 = X)[2dx
QO’ do’ |AK,O'| AKO“ ( )| do’ |ALU| ALO“ ( )|

< s (o [ e

(notice that, suppressing the term involvibgthis estimate is still true i& € 6k N
Eexy)- Thus,

T M0)deQ < Z / (x)[2dx
ges UE/’KG? gedk Mo
< N / IG(x)[2dx
Kez7og§‘k Mo

- /|G (x)[2dx= N/|G (x)[2dx
Ke7

Moreover, fZ < \KI i |f(¥)|?>dxand (3.5) gives then

luzl1.7 < Callflliz(@) +CeVNI| Gl | 2(q)

Combined with Proposition 3.1, this concludes the proof. |

4. THE H2 FRAMEWORK

Proposition 4.1. Assume that’ is an admissible mesh which satisfies Hypoth-
esis(1.3)and thatt € H?(Q) N Hl(Q). Define, forg = K|L € &,

Reo =t 4 /Du o dm(E).
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and, forg € &exiN &k,
Re.o = / CU(E) - n o AM(E).
Then there exists C only depending (®h a) such that

0)deRe , <C hﬁ/|[>2u(x)|2dx
’ L

LeT |oeéL

Remark 4.1. Notice that this result is false in general if we replageby the

mean value ofi on K and if X« is not the gravity center df (considerK :]O,h[z,

=] —h,0[x]0,h[, xx = (2h/3,h/2), x. = (—2h/3,h/2) andU(x,y) = x; we have
thenR¢ o = —1/4 butD?u = 0).

Remark 4.2. It would be tempting to try to use the Bramble-Hilbert regske
[4] (Theorem 2)) to obtain the estimate of Proposition 4rid(also in Proposition
3.1 and Lemmas 7.1, 7.2). This theorem can be used in Fingm&it methods
thanks to a “reference finite element”: for example, in tgalar meshes, each finite
element can be transformed, by some simple linear appitainto some refer-
ence triangle; this allows to easily obtain estimates omlgeshding on the size of
the element, not its geometry (because they all have the gapraetry: that of a
triangle).

We do not have such reference control volume in our meshesc@mirol vol-
umes can have very different geometries); so, in order tegptioat the estimates on
Rk.o only depend on the size &f and not on its geometry, Bramble-Hilbert’s result
is useless and we have to make the whole proof.

Proof of Proposition 4.1. Due to technical reasons, we must first replace the
mean value ofi on B(xk,ahk) by the mean value oB(xx,ahk/2); step 1 is the
study of the consistency error far € &,; with these new mean values (andiifs
regular). In step 2, we prove that the error introduced byuthe of the mean values
on B(Xk, O’QK) can be controlled, and we conclude the proof for interioresddgn
step 3, the case of boundary edges is handled thanks to a $gminek which
brings us back to the case of interior edges.

Step 1 we suppose thatis regular and we take = K|L € &p;.
We define

oo e T o O o220

+@/UDU<E>-nK,adnxs>-



Error estimates for a FV discretization... 11

Let & € 0. By Taylor's expansions, we have, for alke B(xx,ahk /2) and all
y€B(x, ah./2),

U(x) = U(&) + 0u(E) - (x— &) +/ (1—t)DZU(E +t(x— &) (x— &) - (x— &) dt

0) =€)+ D0(E) (v~ )+ [ (L-OD2(E +tly— )y~ ) (v )
Subtracting these equations and taking the mean valdecw, we find
ax)—Ty) = i/DUé )dm(E) - (x—y)

i | a0 e £)x- ) (x- €) e
[ a0t sy )y )- (v £) duam),

We now take the mean values v& B(xx,ahk /2) andy € B(x_,ah./2); since
the mean values of — x andy — y on these sets are respectivaly andx_ and
sincex, — Xk = dgNk g, dividing byd,, we obtain

Reo = : / ahK//thf dtdm(€)d

dom(o )IB(XK7 )| Je

F(t,y,&)dtd
dgm(o xL,"gL |/ // e mé)d

with F(t,x,§) = (1—t)D2U(E Ft(x—=¢&))(x=&) - (x—=4).
Forx € K and & € g, we have|x — &| < hg, so that|F(t,x,&)| < hZ (1 -
t)|D2u(& +t(x— &))|; Jensen’s inequality gives then

ohd .
dZm(0)[B(x, 25))|

/B // £2ID?U(E +t(x—&))Pdtdm(& )dx
2h4

(Reo)? <

* EmoBeL )
21N\2+ 2
/B(XL,"zhL)/a/o (1—t2|D%U(E +t(y— &))[2dtdm(E)dy. (4.1)

By translation, we can suppose that= {0} x & C {0} x RN-1, Letx €
B(xk, 0hk /2); we use the change of variakfie’) €]0,1[x 0 — z= (0,&’) +t(x—
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(0,&")) € Vx C K (K is convex), whose jacobian determinanxig(1—t)N=1 (where
X1 is the first component of — we will see below thak; # 0). SinceN < 3, we
have, ift €]0,1[, (1—t)2 < (1—t)N~! and we can thus write

/ / £)?/D?U(& +t(x— &))[2dtdm(€)
/U/O (1-tONLD%U(E +t(x— &))[>dtdm(&)
< |X1|’1/K|D2U(z)|2dz 4.2)

Write X« = (a,b) with a € R andb € RN-1. The straight line going through
x¢< and orthogonal tar ¢ {0} x RN-1, (i.e. the lineR x {b}) intersectso (i.e.
(0,b) € ). Thus,|a] = |(a,b) — (0,b)| > dist(xx,0) > dist(xk,dK) > ahk (recall
that B(xk, orhk ) € K). Thus, ifx € B(xk,ahk/2), we havelxi| > |a| — |x1 —a] >
ahk — [x— x| > %% and (4.2) gives then

[ [a-vptuce rix- g Parame) < 2 [ 0%z

Therefore,

m& // t)%|D?0(€ +t(x— &))[>dtdm(& )dx
172

2 200712
e ./K\D u(2)2dz

Coming back to (4.1) (and using the preceding inequality algh L instead of
K), we obtain

an3 4n?
2 < 20(2)12 D2u(2)|2
(R < gazmigy JID0@P Azt b [ D) dz
Sinced, > dk ¢ > ahk, we deduce that

M(0)do (R 5)? < 4hK/\D2 2)|2dz+ ZE/L\DZU(Z)Fdz (4.3)

Step 2 we now estimate the difference between the mean values af
B(Xk, ahk) and onB(xk, “hK) and we conclude for € &.

Let v(x) = U(x) — (m Jexe,ane) U (y)dy) - (X—Xk). We have, forx €

B(O,ahK),
X 1 14+t X
v(xK+x)—v(xK+§) :/0 DV(XK—F%X) -Edt.
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Integrating orx € B(0, ah ), dividing by |B(x«, ahk )| and thanks to the change of
variabley = xx + 3 in the second integral, we find

TV V(X) dx— /
‘B(XKuahK”/B(XK,CIhK) ( ) |B XK,ahK | X, 2

1 1+t X
IB(xx, ahg)| ./B(OﬂhK)-/O < “T2 ) 2
ahK

Since the mean values @ixx, ahx) and onB(xk , 75 ) of X — x—xk are null,
the mean values of on these sets are equal to the mean valuas @i the same
sets. Thus, denoting

1 1 1
U (N S PR S o
o7 dg <|B(XK,ahK)| B(x.ahk) ) IB(xi, 90| JB(xc, “3) ) y)

we have just proved that
1+
O -
V(XK-i- > X>

ol < g g [ [
K.o 2d0’|B xK,ahK ‘ B(0,ahk)

Using the change of variable— z = xx + l+tx (which sendB(0,ahg) into
(but not onto)B(xk, ahk )), we deduce

2
a?h? 1 1 2 \N
Ik o) < K / / Ov(z <—> dtdz
(ko) < g <|B<xK,ahK>| sanodo P T
22N7202h%

1 2
< Ov(z)|dz]) . 4.4
0z (|B<xK,ahK>|/s<xK,ahK>‘ @) ) (4.4)

We havelv(z) = Ou(z) — Wlahm JBixc.ah) JT(Y) dy. Thus, thanks to Lemma
7.1,

1 2
—_ Ov(z dZ
<|B<xK,ahK>|/s<xK7ahK>' @l >
1 2
Ou(z) — Ou dzd
<\B<xK7ahK>\|B<xK,ahK>\/B<xK,ahK>/B<xK,ahK>' (2~ 0uy) y>
ClhE” / 2 N2
D<u(x)|“dx
B, ah)] B )] Jeane) 0¥
IB(xk, arhk )| JB(x¢.ah)

dtdx

ID%u(x) |2 dx

whereC; andC; only depend oriN, a).
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Coming back to (4.4), we obtaidg only depending otiN, a) such that

Csh
(Ik.o)? < s

4
RS K D2U X 2dX.
el ANLLC]

o is of diameter less thalng, so thatm(g) < C4hY ~* with C4 only depending oiN.
Moreover,d, > dk ¢ > ahg; hence,

m(0)do(lk ¢)? < Chic ™ / ID?u(x)|? dx
oSN ah B(xk, k)] e ahe)
< Coh? /K ID2u(x) |2 dx (4.5)

with Cs andCg only depending oriN, ).

We haveRg o = ko + R ¢ — ILo- Thanks to (4.3) and (4.5), we deduce
m(0)deR2 5 < Crhi / ID20(x) |2 dx+ C7h2 / DAU(X)2dx  (4.6)
’ K L

with C; only depending orfN, a). This estimate has been obtained foregular,
but, by the density result of Lemma 7.3 (found in the Appehdbids also satisfied
by functions inH?(K U o UL) (thus by functions irH?(Q)). This concludes the
proof if o € &n.

Step 3 suppose now that € &gy N Ek.

Sincet € H2(Q) NH(Q), we haveti = 0 on g. Denoting bySthe orthogonal
symmetry with respect to the hyperplane generated hiyis then well known that
the function? : KU o US(K) — R which is equal tai onK and to—to Son §K)
belongs taH2(K U a U S(K)).

We notice that all the hypotheses 0K, xx,o,L,x ) used in Steps 1 and 2
(and in the proof of Lemma 7.3) are satisfied hereg(Kyxx, 0, S(K),S(xk)) (with
dist(Xk, S(xx )) = 2dist(xx,0) = 2d, instead ofdy).

The result (4.6) of Step 2 hence applies withinstead oft and we can write,
defining7 and%gx as the mean values @ onB(xk, ahk) andB(xgk), ahgk))
respectively,

Uk — U. 2
2m(0)d0’< szUS(K) +m(10)/05%(5)-n}<70dn(5)>

<Ch2/D2%x2dx Chz/ D29/ (x)[?dx
7KK| ()] +7S(K)S(K)| (x)

Since?% =uonK, we haveZk = Uk and, in the sense of the tracés% = Ju on
0. Moreover,% = —to Son S(K), so that%gk) = —Uk (notice thathgk) = hk,
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which impliesB(S(xk ), ahgk)) = S(B(x«, ahk))) and|D?% (x)| = |[D?u(S(x))| for
x € SK). Thus, the preceding estimate yields

_ 2
2m(o)ds (j—‘wﬁ / Dv(f»nK,adrma) <20t [ D%

which is exactly the desired result fore eyt O

Theorem 4.1. Assume that G (H(Q))N and that the variational solution to
(1.1) belongs to H(Q) NH(Q). If 7 is an admissible mesh which satisf{@s2),
(1.3)and(1.4), there exists C only depending (@, ||V|| (L= (q)n, [[Pl|L=(0),{,a,M)
such thati» being defined b§2.1)and us = (uk )ke.# being the solution t¢1.9)—
(1.10)

U7 —uzll7 < C[Ullhzo) + || DG|[|L2))h7-

Remark 4.3. A similar result, withtuk replaced byi(xkx ) andG = 0, is proved
(using (1.3)) in [9] and [10] (Theorem 3.2). Here, we alsoth€k4) becausaik
taking into account all the values @fon a ball around , we cannot controRk o
in Proposition 4.1 (for example) only by means|af _ |D?0|?, as it is done in [10].

Proof of Theorem 4.1. By (1.1), diMvl) € L?(Q) ¢ LY(Q) and,v andu being
continuous o) (becaus@ € H?(Q) andN < 3), we can apply Lemma 7.4 (see the
Appendix) to compute the integral of diw) on a convex open subset ©f Thus,
integrating (1.1) on a control volume € .7, we obtain

-3 [0 ncodmE)+ 3 [ viE) noud) ame)
o0& 9 océk 9

+ [ bogueoax=[K|fc+ 5 [ 6(&) neodme).  @7)

oc& ' 9

Denote, as in Proposition 4.1,

Reo = K dU“L - <— m(la) / DU(E)-andle(E))

with o = KL if 0 € &k Ny andt, = 0 if 0 € Sk N Eext.
Let

ko = VioUo.s — % (@) ncou(&) dmié)



16 J. Droniou

wherety . =Tk if k¢ > 0,Ug 4+ =T if vk ¢ <0 ando = K]|L € &k N é&jnt, and
Ug+ =0if vk ¢ <0 ando € &k N Sext.
Finally, define
Pk = bl — —/ b U
K|
and

1 dk o dL,a
m/oe(f)'n&adm(f)— <EGKO a GL,a>

(with the convention thatr = K|L if 0 € ék N & and thatd, s = G g = 0O if
0 € &k Néext).

(4.7) shows thattk )kc » satisfies (1.9)—(1.10), provided that we add
Klpk + Y m(0)(Re.o+ ko +Mko)

g€k

to the right-hand side of (1.9). Therefore, subtracting ¢logiations satisfied by
(Uk ke to the equations satisfied Wik )ke7, we see tha(ex )kes = (Uk —
Uk )ke7 Satisfies

m(o
VK € 7, ; Q(w —e)+ Z mM(0)Vk o€+ + |K|bkex
| gebk

= [Klpx+ Y m(0)(Rk.0 + k.o +Mko)
OESk

(whereg =K|Lif 0 € &k Néinrande. =d o =G =0if 0 € k Néexy)
Vo=K|L € &n, €+ =6 if ko >0, e;4 =@ otherwise,
VO € EextNék, €+ =6 if kg >0, €54 =0 otherwise.
By deﬁnition,(RK,a)Keﬁ, ocbk s (rK,U)K€(77 oedk and(MK,U)Keﬁ, oec& are con-
servative: for allo = K|L € &jnt, we haveRk ¢ = —R_ g, k.o = — Lo andMk ¢ =

—M_ ¢ (notice thaink o = —n_ ). Hence, by Proposition 3.2 in [7], we deduce that
there exist<y only depending orQ, ||v|| (L= (qyn, {) such that

1/2 1/2
ezl <co< )3 \K|p§> +Co ( )3 m<a>daA§> N

Keo ges

where we have denoté}; = |Rk ¢ +k.o + Mk ¢| for someK € .7 such thao € &k
(by conservativity of these quantities, this definition slo®t depend on the choice
of such &K).

We have

1
o = | L b0 o a0
K| Jk
|1b]| () // a a
< —= U(y) —u(x)| dydx
KT[B0%, AN Ji Jowe ang ")~ 2019y




Error estimates for a FV discretization... 17

Therefore, by Lemma 7.1, there exi§sonly depending ortN, |[b[.»(q), @) such
that

Klp? < Cih [ |00 2dx
K

(4.9)
By definition,
kol ‘ﬁ [ V(&) oo, ~(E) dmie)
IR0 [ o, —u(g)]dmie) (.10)

and eithefti; y =T, for someL € .7 such thato € 4, orliy + = 0 ando € &ext.
In the second case, singes H}(Q), we obtain|rk 5| < 0 (i.e.rk ¢ = 0). In the first
case, we define= |[u_ —u| € HY(Q) and, using Lemma 7.2, we see that

(% / \UL—U(E)\dm(E)>2

1 2
CRIAGLLG)
S AGLLGE v<x>dx>2
= m(o) Jo |ALol JAe
2
+2<|A]|:o| N v(x)dx>
Coh? 2 ?
|ALgl AL.J‘DV(X)‘ dx+2(|AL,o| AL.JV(X)dX>

with C, only depending oriN, o). But Ov = sgn(u,. — U)Ju and

1 _ _
v = ' BT G0 o a2V~ 00

1
1B(x_.ah,)| U(y) —u(x)| dy,
B arT  on, 190~ 00
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so that, by Lemma 7.1,

(55 /\uL—— £)1ame) )

‘ALU‘ A

1 2
2 / / u(y) —tu(x)|d dx>
(IAL,UIIB(XL,ahL)| A B(MmL)| (y) —a(x)|dy

Csh? / Y
< Ou(x)|“dx
Aol L\ ()]

|Ou(x)|?dx

N

whereCs only depends ofiN, a). Using this in (4.10), and since
|ALg|=m(0)dLo/N > am(o)h /N

(becaus@, ; =dist(x_,0) > dist(x_,dL) andB(x_,ah.) C L), we deduce that there

existsCy4 only depending ofiN, [|V|[ =@y, o) such that

m(o)dyh?
M(0)dot2 5 < cgwnﬁmwﬁ /L ITu(x)[2dx
< Cshsh /L I0u(x) 2 dx (4.11)

for somel € .7 such thaio € & (we have used the fact thadg < 2h). Notice that
this estimate is also true (for ahye .7...) in the case wheng; ;. = 0 with 0 € &y,
sincerk ¢ is then null.

We have, foro = K|L € &nt, Sincedk ¢ +d. ¢ = dg,

Mco — d”( /G o dm(E) — — G(x).nKﬁdx)

‘AKU| NKo

d 1
8 (e /00 meotm) 1 [ 600-nodx)

Ao 1
- dK—(W/ G“)d”‘(‘t)‘mm AK,UG(X)"X)”“

Hence X — X? being convex, Lemma 7.2 giv&s only depending oriN, a) such
that

dKo’ h%
dgs ‘AK 0| v

dLo' h2
0G(x)|?dx+Cs—Z —*
| ( )| dgs |ALO" Ao

M2, < Cs o I0G(X)[2dx
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But|Ak ¢l =m(0)dk ¢/N and|A g| = m(0)dL o/N, so that
m(0)dyMZ o < CsN (hﬁ / I0G(X) 2 dx+ ? / |DG(x)|2dx> . (412
' v Ao

Notice that, suppressing the term involvihgthis estimate is still true i& € &k N
Sext-

We now gather (4.9), (4.11), (4.12) and the estimates ofd%itipn 4.1 in (4.8);
using Hypothesis (1.4), we find th@g only depending on

(Q, V[l L=(@yns 1 0llL=(q), ¢, a)

such that

le7|ly,7

1/2
< Gshyg z Ou(x) |2 dx

+Csh ( > z
oeéLeT |oeéL

1/2
+/ |DG(X)|2dx>
L
Coh 11170 20

1/2
+Cohs (M >3 /\DZU(X)\deJr/L|DU(x)|2dx+./L\DG(x)\2dx>

LET * L

/\DZU(X)\de+/|DU(x)|2dx
L L

N

1/2
< Cshz|||00] || 2(q) + VMCshz (/Q‘D2u(x)|2+\DU(x)‘2+|DG(x)|2dX>
and the proof is concluded. O

5. PROOF OF THE MAIN RESULT

We can now prove, using interpolation techniques, Theordm 2

Proof of Theorem 2.1. Let
B={(U,G, f) e H}(Q) x (L2(Q))N x L?(Q) | Au— div(vT) — bu+ div(G) + f = 0}

(endowed with the norm dfi(Q) x (L2(Q))N x L2(Q)) and defineT : B — X(.7)
by T(T,G, f) = (Ux — Uk )ke 7, Where(uk ke~ is the solution to (1.9)—(1.10).
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Corollary 3.1 shows that, iK(.7) is endowed with the discretdl-norm, T is
linear and continuous with a norm bounded@yQ, | |V|[L=q)n, o, M).
If we define

A = {(U,G,f)e (H*(Q)NHG(Q)) x (HY(Q)" xL*(Q) |
Au— div(va) — bu+div(G) + f =0}
(endowed with the norm ofH?(Q) NH(Q)) x (HY(Q))N x L2(Q)), Theorem

4.1 shows thatX(.7) still being endowed with the discretd-norm, T : A —
X(Z) is continuous with a norm bounded Bths, whereC; only depends on

(Q, [Vl Lo @yn, ||b|l|_°°ﬁQ_)>Z,a,M)_- _
Thus, by classical interpolation results (see e.g. [1],0fém 4.1.2, p.88)T is
linear continuousA, B|1_s — X(.77) with a norm bounded by

CL3(C1h7)® < max(Co, 1) max(Cy, 1)hS,.
Subsection 7.2 in the Appendix shows that

ABl1s = {(UG,f)eH(Q)NHH(Q),H5(Q)l1-s x (HAQ)N x LA(Q)|
Au — div(va) — bu+div(G) + f =0}

(with equivalent norms). To conclude the proof of the thearé remains therefore
to see thafH2(Q) NH(Q),H3 (Q)]1-s = H1S(Q) N H(Q).

In the caseN = 2, i.e. if Q is a polygonal open subset®&f, this result is proved
in [2] (Theorem 3.1).

If Q is convex, we propose the following simple proof (which da nses the
fact thatQ is polygonal). First of all, notice that we have, by definitioH2(Q) N
H3(Q),H3(Q)]1-s — H(Q) and, since the inclusions

H2(Q)NH(Q) — H%(Q) and HQ)— HY(Q)

are continuous, by interpolation, there is a continuoukigion
[H3(Q) NH(Q), Hy(Q)]1-s — HX(Q), HY(Q)l1-s = H"3(Q).
This shows thafH?(Q) NH}(Q),H3(Q)]1-s — HS(Q) NHA(Q).
To prove the reverse inclusion, den@e- A~ with Dirichlet boundary condi-

tions. SinceQ is convex,Sis linear continuous

H1(Q) - H}Q) and L2Q)— H2Q)NHQ).
A being linear continuous

HY(Q) - H Q) and H?Q)—L*Q),
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we deduce thabo A is linear continuous
HY(Q) - H3}(Q) and H3Q)— H*(Q)NH(Q).
By interpolation,So A is thus linear continuous
[H?(Q),H}(Q)]1-s = HYS(Q) — [H3(Q) N H5(Q), H5(Q)]1-s-

ButSoA = Id onH(Q), and this shows therefore thdf+S(Q) NH(Q) is contin-

uously imbedded ifH2(Q) NH(Q),H3(Q)]1-s, which concludes the proof of the
theorem. O

6. NUMERICAL RESULTS

We present here a few numerical results which illustratectiverergence results we
have just proved.

In all these tests, the open sefis=] — 1, 1[> and we have taken no lower order
term, i.e.v =0 andb =0 in (1.1); as a right-hand side, we have fet 0 andG =
—Du (some tests have also been made v@ts —Ou+ W whereW is divergence
free, and the results are similar, provided tiéathas the required regularity). The
meshes used are regular cartesian grids, and we analysatéhaf convergence by
showing, in each case, the discreténorm of the error versus the size of the mesh,
in log-log scale.

Our first test function is a pyramid, based on the functiyy) — (1— |x|)(1—
ly|) that we have twisted in order that the peak béldt/2, 1//2) instead of(0,0)
(this has been done to avoid too good convergence result®dyenetries between
the function and the mesh). The results are shown in FigurEnh#&.dots on this
figure indicates a reference slope; as we can see, the ratenadrgence is roughly
0.5, which is the expected result since the function is hete3?¢ for all £ > 0.

Figure 1. “Pyramid function”; reference slope: 0.55

Then, we have takefx,y) — (1 —x%)(1—y?)|(x,y)|, which belongs (ifs €
]0,1]) to H*S=¢ for all £ > 0. Figure 2 shows different cases ®which confirm
the result of Theorem 2.1.
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Figure 2. |(x,y)|® singularity; cases = 0.2 (reference slope: 0.2 = 0.5 (reference slope: 0.5),
s=0.7 (reference slope: 0.7)

If we add a convection term, with negative divergence, wipiddvokes the loss
of coercivity in (1.1), the results are similar to the preiogdones, the only dif-
ference being that the constant “C” appearing in Theorems2much bigger. For
example, coming back to the first test function, the constattie reference slope
of figure 1 is 2 whereas, if we add a convection term with —10(x,y), it becomes
80 (and the slope does not change).

7. APPENDIX
7.1. Technical lemmas

Lemma 7.1. There exists C- 0 only depending on N such that, if U and V are
non-empty open subsetsRIf contained in a same ball of radius R, we have, for all
ve HY(coUuV)),

‘ﬁ/uv(x)dx—vﬂ/vv(y)dy

1 2 CRV#2
< [ —— v(x) — v(y)|dxdy) < Ov(z)>dz
<\UHV|./U./VH) )| y) IV oo, 042

2

Proof of Lemma 7.1. co(U UV) is a convex open set &N. Thus, its boundary
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is Lipschitz-continuous and the regular functions are deéng4(co(U UV)). We
therefore just have to prove the lemma for regular functions
The first inequality is obvious. Let us prove the second.iff regular, we have,

forallxeU and ally e V, v(x) — v( ):fol Ov(tx+ (1—t)y)- (x—y)dt. This implies

|U||V|//| Y)ldxdy< |U||V|/// |Ov(tx+ (1-)y)| [x—y| dtdydx

and, sincéx—y| < 2Rfor all xe U and ally € V (U andV are contained in a same
ball of radiusR), Jensen’s inequality gives

(1 o = 'dXdy>2

|U||V|/// |Ov(tx+ (1-t)y)[*dtdydx (7.1)

Lety € V. Using the change of variablec U — z=tx+ (1—-t)y e tU + (1—
t)y C co(U UV) and Fubini’s theorem, we find

1
/// \Dv(tx+(l—t)y)|2dtdxdy</ |Dv(z)\2// t Ndtdydz (7.2)
JUJV JO co(UuV) Vv JI(zy)

wherel(zy) = {t € [0,1] | Ixe U, tx+ (1 -t)y=2z}. If t € I(z)y), thent(x—y) =
z—y for somex € U; sinceU andV are contained in a same ball of radidswe

have then Rt > t|x—y| = |z—y| and thud (z)y) C ['Z;Fg",l]. We deduce that

1 1 (RN?
/ t*thg/ tNdt < —%
J1(zy) S N—1|z—y]|

Thus, there exist§y only depending oN such that, for alk € co(U UV),

1 1
t-Ndtdy< RN‘l/id _ RN—1/ T dE.
fo o ity < R [ oty =GR [ eirde

U andV are included in a same ball of radiBsthus, cqU UV) is also included in
this ball and, for allze co(lU UV), z—V is therefore contained iB(0, 2R), which
allows to write, using polar coordinates,

t~Ndtdy < RN—l/
/V/I(Ly) y o (02R) IEI'\I 14

. CORN—lc R 1 N—ld
- 1 o pN_lp P

= 2C,CRV

whereC; is the(N — 1)-dimensional measure oB(0,1) (C; only depends oiN).
Gathering this last inequality, (7.2) and (7.1), we conelute proof of the
lemma. O
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Lemma 7.2. If .7 is an admissible mesh which satisfies Hypoth@s), there
exists C only depending diN, a) such that, if ve H(Q), then, for all K€ .7 and
al o e &,

Ck o

Ov(x)[2dx
S Tawol Jos!

[ v@yamiz| <

1
‘|AK,U| o " )

Proof of Lemma 7.2. The regular functions being densehit(Q), it is suffi-
cient to prove the lemma farc C1(RN).

By translation and rotation, we can suppose at {0} x ¢ with & ¢ RN-1
and thatxk = (dk ¢,0).

For a € [0,dk o], we denoted, = {y € RN | (a,y) € Ak s}. By definition,
(ay) € Ao if and only if there exists € [0,1] andz € ¢ such that(dk,¢,0) + (1
t)(0,2) = (a,y); this is equivalent td = a/dg o andy = (1-t)z= (1-a/dk¢)z
Thus,0, = (1—a/dk ¢)0.

Forally € o and alla€ [0,dk ¢|, we have

o {afo- ) (a1 (o)

Integrating ory € ¢ and using the change of variatde- (1—a/dk ¢)y, we find

1

/| V(E)dm(f)—@ |, viaz)dz

dKo
//Dv ta, —t— . —ai dtd
d y ’dK70'y y
Multiplying by (1—a/dk o)N~1 and integrating om € [0, dk ¢], we obtain
o a \N1 dk,0
/V(E)dm(f)/ (1——> da—/ / v(a,2)dzda
o Jo dk,o Jo Ja,
dk.o a N-1
= 1- <
/0 [( dKU) %
/ / Ov (ta ( >y> ' (—a, iyﬂ dtdyda (7.3)
dKo dK,o

But de“(l—a/dK,U)Nflda: dk o /N and| Ak ¢| = m(0)dk ¢ /N; therefore, (7.3)



Error estimates for a FV discretization... 25

gives, thanks to Fubini’s theorem,
\AK a|

&)dmé) / v(X) dx

: ./f“[@—%)“ k
/ / Dv(ta( d}(g)y)-(—a,%yﬂdtdyda (7.4)

By definition of an admissible mesh, the straight line goihgotigh xx =
(dk.¢,0) and orthogonal tar C {0} x RN~ intersectso; this means that & d.
Moreover, o is contained inK which has diameteng; thus, o has diameter less
than or equal td . By Hypothesis (1.3)k o = dist(xk, 0) > dist(xk,dK) > ahk.

We deduce that, for ajf € 7, |y| = |y— 0| < diam(0) < hx < 2dk 0. Thus,

[l
Lo ) o) oo

s Co/dml( dKa>N E
Lo (g )v)

whereCp only depends ow.
Leta €]0,dk o[. By the change of variable

] adtdyda (7.5)

da: (L,y) 6]0,1[x6—>z:< <1 t—) )erpa 10,1[x0)

dKU

(whose Jacobian determinantiel —ta/dy )Nt = a(1—2z /dc ¢ )N sincez; =

ta), we have
1 a
// Dv(ta,<l—t—>y>‘dtdy
JaJo dK,a
7z \ N
— / IOv(z)|a” (1——> dz
$a(]0,1[x5) Ok o

But, since(ta, (l—tﬁ) y) = d%(dK,a,O) + ( dK ) (0,y), we have

$2(]0,1[x0) C k.o
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and Fubini’'s theorem allows thus to write

dK,a
2 // (i (152 ))
/0 < dKO’) Y d y
Ok o z > N+1< a >N1
1-— 1-— dzda
/ /a ]01[><0 < dKO’ dKo

a \ N-1
-5
< / |Dv(z)\/ ( 2 > dadz
Ko ac[0,dk o] | z€¢a(]0,1[x O) -9 =

dK,a

adtdyda

If ze ¢a(]0, 1[><6) we havez; = tafor somet €]0,1], i.e. 0< z < a. Therefore,
1- i <l-g%+and

1 N—-1
/ ( o dK,CI > d
- 7 as dK,U-
ac[0,dk.o] | z€9a(]0,1[x T) — g,

We deduce that
Ov | ta,
(12 (115 ))

[ G-) L
< ng/AK |v(z)|dz

adtdyda

We now use this inequality in (7.5) and introduce the resgléstimate in (7.4) to
obtain

1 COdKa
= [ e m(f)‘ e [ v

V(X)dXx—
‘|AK7U" o ( )

Jensen'’s inequality concludes then the proof of the lemma. O

Lemma 7.3. Let.7 be an admissible mesh,= K\L cénrandU=KUoUL.
Then U is an open subset &N and C°(U) is dense in K(U).

Proof of Lemma 7.3. Step 1we prove that is open.
By translation and rotation, we can suppose #at {0} x ¢ with & ¢ RN-1
and, since the line going througkk , x ) is orthogonal tag, that 0c g, xx = (b,0) €
oo[x {0} andx_= (a,0) €] — gx {0}. Define thenp : (t,y) €] — 1, 1[xRN-1 —
(t—a+t*h, (1—t))y) €]a,b[xRN-1 (wherett = max0,t) andt~ = max0, -t));

- - - - . + . +
¢ is an homeomorphism (the inverse mappinglig,,Z) = (Z—g + Zl3,(1— % -
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2)717)). Itis easy to see that(] — 1,1[x 0) = Ax,c UOULL o; indeed ¢ (0,5) =
0, 9(]0,1[x0) =/ ¢ (recall thatxc = (b,0)) and¢ (] — 1,0[, 0) =/ ¢ (recall that
x_ = (a,0)); by hypothesis on the egdes,is open inRN- and ¢ (] — 1,1[x0) =
Nk g UOTUAL g is thus open ifa,b[xRN-1 i.e. inRN.

We haveU = KUoOUL = KUk s UOUA ;UL (because’x s C K and
N\ C L by convexity ofK andL), and this proves that is open inRN (K andL
are open irRN).

Step 2 we prove that, foralh > 1,U C AU (recall that Oc o C U).

To see this, it is sufficient to show that, for ake U, |0,z/c U; indeed, once we
have obtained this result, we write, fore U\{0} (the casez = 0 is obvious) and
A >1,z=A($2) and, sincefz= +z+ (1— 1) x 0€]0,zC U (because} €]0,1])
we deduce that € AU.

Letustakeze U = LUG UK.

Assume first thaz € @. Then, sinces is an open convex subset {} x RN-1
and Oe o, a classical convexity lemma tells us th@z[C o C U, which concludes
this case.

Assume now that € K\@ (the case € L\0 being treated the same way).
If ze K, then by the same convexity lemma as before, sineekDandK is
convex and open, we hay@ z[C K c U. We can thus suppose that K\ 0.

\ Llet us stop a moment to prove the following geometrical fad€:N ({0} x
RN =0.

We first notice tha 1 ({0} x RN"1) = 0: indeed, if it is not the case, then,
takinga € KN ({0} x RN-1), since 0c K, we have]0,a] C K; but 0€ o which is
open in{0} x RN-1 and, smcqo a] C {0} x RN~ with a# 0 (because @ 0K,
which does not intersects), we can findb €]0,a] N o; this means that € K NK,
which is not possible.

Thus, A := dK N ({0} x RN71) is equal toK N ({0} x RN-1) and is therefore
convex (becausk and{0} x RN-1 are convex).

We haveo C A (and thusg C A, A being closed); take € A C {0} x RN-1,
SinceA is convex, the seD = Ug<t<1(tc+ (1—t)0o) is contained imA; we want to
show thatO\o = 0.

o being open in{0} x RN-1, O and thusO\@ are also open i{0} x RN-1,
We haveO\o C JdK, which impliesO\o C U{g,egK,U/?ég}F. Suppose thad\o is
not empty; then, since it is an open subsef®@f x RN~ and{o’ € &, 0’ # o} is
finite, there exist®’ € &k \ {0} whose adherence contaiNgoints ofO\o C {0} x
RN~ 1 in general position. Thus, the hyperplane containirigs the affine space
generated by these points, that is to $8y x RN, By hypothesis on the edges,
the intersection o{0} x RN-! and of the line going througkg and orthogonal to
{0} x RN~1 pelongs to botho and o’ (sinceo and o’ both generatg0} x RN-1),
which is a contradiction with the fact thatandg’ are disjoint.
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Thus,O\T is empty, andO C @. Sincec € O, we deduce that € G, and this
concludes the proof th#& C 7, i.e. thatdK N ( {10} x RN-1) =7.

We also notice that, sinck N ({0} x RN 0 (see above) and sinog <
]0,00[xRN~1, by connexity ofK, we haveK C]O oo[xRN-1. We prove the same
way thatl C] —eo,O[x RN-1

Let us now return to the proof that, zfc JK\T, then]0,z[C U.

As we have seen beforéy o Uo UA 4 is an open set and, since 0 belongs
to this open set (and # 0), ]0,ZN(Ak.oc U0 UAL5) is not empty. We have €
K C [0,00[xRN"1; sincez € dK\@ and 9K N ({0} x RN-1) = @, this impliesz ¢
{0} x RN-1 and thusz €]0,00[x RN, Hence 0,2/ C]0, o[ x RN-1,

ButAL s CLC]—,0xRN"1ando c {0} x RN-L; therefore]O ZN(Lk.o U
oUAL ¢) =]0,Z[N Ak . This set being non-empty, we can take|0,zZ[NAk o C K.
Since 0 andz belong toK, ]0,c] and|c,Z] are contained irK, which implies that
10,Z]=]0,c]U|c,Z[C K and concludes this step.

Step 3 we prove the density result.

Takev € H?(U) and define, fol > 1, v, (X) = V(x/A); v, belongs taH?(AU)
and the restriction of, toU C AU converges, agd — 1, tovin H2(U).

Indeed, to see the convergencelL#(U), we takee > 0 andw € C;(U) such
that||v—wl| 2y < €; we then write, withw) (X) = wW(X/A), [[Vy — V|| 2y < [[Va —
Wy |lL2) + [[Wa — W[ 2y + [[W = V|| 2u). By a change of variable, we hajlg, —
W [z < [V =Wallizpau) = A2V —wW]| 2y < AN2g, so that vy — V]| 2y <
(AN241)g+ [|wy —W|| 2. Sincew € C¢(U ), the dominated convergence theorem
(for example) givegiw, —w|| 2y) — 0 asA — 1 and this concludes the proof of the

L2 convergence. The first and second derivatives dfeing (with evident notations)
A~1(0Ov), andA ~2(D?v),, theH? convergence is an immediate consequence of the
L2 convergence showed above.

To approximatev in H2(U) by regular function, we thus just need to approx-
imatev, in this space. We extend, to RN by 0 outsideAU and take(pn)n=1 @
smoothing kernely, * p, € C2(RN) and, smceU is relatively compact iMU and
vy € H%(AU), we havev, * p, — vy in H3U) asn — « (because, fon large
enough — such thad + supgpn) € AU —, we have(v, * pn) = (Ov, ) * p, and
D?(v) * pn) = (D?v,) * pn onU). This concludes the proof of the lemma. |

Lemma 7.4. IfU is a convex open bounded sef®ff andW ¢ (C(U))N is such
thatdiv(W) € L1(U), then

/Udiv( dx—/ W(&)-n(&)dm(&)

(m denotes here th@N — 1)-dimensional measure a#lJ andn is the unit normal
to dU outward to U— notice that, since U is convex, it has a Lipzebontinuous
boundary).
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Proof of Lemma 7.4. By translation, we can suppose that @ . Then, for all
ze U, sinceU is convex,[0,Z[€ U; as we have seen in step 2 of the proof of Lemma
7.3, this implies that, foralh > 1,U c AU.

Let W, (X) = W(x/A); we haveW, € (C(AU))N andW, — W uniformly on
U (and thus ordU) asA — 1 (this is due to the uniform continuity & on this
set). Moreover, difW, ) = A ~1(div(W)), € L}(AU) and, as in step 3 of the proof
of Lemma 7.3, we deduce that @i/, ) — div(W) in LY(U) asA — 1. Itis thus
sufficient to prove that, for all > 1, W, satisfies the result of the Lemma.

Let (pn)n=1 be a smoothing kernel. Extend/, to RN by 0 outsideAU and
defineW,, =W, x p, € CZ(RN). By regularity ofW, ,, we have

[ dvWo)0dx= [ W, (§)-n(&)dm(E). (7.6)
U ou

But W, is uniformly continuous on the open sktJ, which contains the compact
setdU; thus,W, , — W, uniformly onoU.

We have, in the sense of the distributions Y, div(W, ) = div(W, ) % p,.

Since diyW,) € LY(AU) and U is relatively compact imU, we deduce that
div(Wp ) — div(W,) in LY(U) ash — co.

These convergences allow to pass to the limit in (7.6) to sagW , satisfies
the result of the lemma, which concludes the proof. O

7.2. Interpolation

We prove in this subsection that, d is a bounded open subset®F (N =2 or
3) with a Lipschitz-continous boundary amd= (C(Q))N satisfies diyv) € L2(Q),
then, for all§ €]0,1], the interpolate space of ord@rbetween

A = {(@G,1)e (HAQ)NHHQ) x (HYQ)N x L2(Q) |
Au— div(va) — bu+div(G) + f =0}

and
B={(U,G, f) e H}(Q) x (L2(Q))N x L?(Q) | Au— div(vT) — bu+ div(G) + f = 0}
is (with equivalent norms)

C = {(@G,f)eHXQ)NHHQ),Hy(Q)]s x (H*? ()N x L*(Q) |
Au — div(va) — bu+div(G) 4 f =0},

each of these spaces being endowed by its natural norm értbit the interpolate
space of ordef betweerH(Q) andL?(Q) is H1=?(Q)).
This result is quite natural, but not so easy to prove.
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To simplify the notations, we l&¢ = H3}(Q) andW = H2(Q) NH}(Q). The
proof relies on a result in [11]. Define the linear applicatio

Te LV x(L2Q)N xL2Q);H Q) NZW x (HY(Q)N x L2(Q);L2(Q))

by T(U,G, f) = Au—div(vt) — bu+div(G) + f; this application is continuoud/ x
(HY(Q))N x L2(Q) — L?(Q) because, since div) € L?(Q) — this is the only place
where we need this hypothesis — amMdc C(Q) — recall thatN < 3 —, we have
div(va) = div(v)u+v-0u € L?(Q) whentu € W. Then

A= {xeW x (HY(Q)N x L2(Q) | T(x) =0},
B= {xeV x (L2(Q))" x L(Q) | T(x) = 0}

and Theorem 14.3 in [11jllows to see that
[AB]s = {xe W x (H{(Q)N x L2(Q),V x (L2(Q))N x L?(Q)]s | T(x) =0} =C

with equivalent norms (notice that this last space is equ&l because the inter-
polate space of a product of spaces is the product of thesmmneling interpolate
spaces), provided that we can construct an application

Re ZHYQ)):V x (L2(Q)N x L2(Q)) N .Z(L%(Q);W x (HY{(Q))N x L2(Q))

such thaff oR=Id onH~%(Q).
The rest of this subsection is devoted to the constructisuoh aR.

The main difficulty in constructing this appllcatlon is treck of regularity of
0Q. If Qis aregular (or convex) open setand (C1(Q))N (for example), theiRis
quite easy to build: take, fdr € H=1(Q), R(L) = (1, 0,0) wheret is the variational
solution ofAu— div(va) — bt = L with Dirichlet boundary conditions; the regularity
of dQ ensures then thais continuoud ?(Q) — W x (HY(Q))N x L2(Q).

If Q is a polygonal non-convex open set, we must find another wagristruct
R. The main idea is to get rid dd and to bring ourselves back RN.

Following an idea of [3], we first build
re Z(L2(RY);L2(Q)) N2 (HYRY); H3(Q))
such thar(¢) = ¢ forall ¢ € 2(Q).
To do so, we notice that, sin€@ has a bounded Lipschitz boundary, so does

RN\ Q; there exists thus an extension operd&awhich is continuougd}(RN\ Q) —
HY(RN) and L2(RN\Q) — L?(RN) (the classical extension operators constructed

*In fact, this theorem concerns the interpolation of comfarach spaces, and we consider here
spaces of real-valued functions; but it is not very diffidolsee, since we handle spaces of functions,
that the result of this theorem is also valid in our case dfirgarpolation.
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via symetries satisfy these continuities). We defity r(¢) = (¢ — E(jrn0))a-
Sinced — E(jgn o) = 0 onRN\Q, we clearly have (¢) € Hg(Q) if ¢ € HY(RN);
moreover, if¢p € Z(Q), prn\ = 0 so thatr(¢) = ¢, andr has thus the desired
properties.

r allows us to extend elements ldf1(Q) into elements o ~1(RN), in such a
way that elements df?(Q) ¢ H1(Q) are extented into elements of(RN).

Indeed,r* : H=%(Q) — H~L(RN) is linear continuous and, since L2(RN) —
L?(Q) is continuousy* is also continuous?(Q) — L2(RN) (we have identified, as
usual, the dual space bf to L? itself). Moreover, ifL € H~1(Q), one hag. = r*(L)
in 2'(Q): indeed, for allp € 2(Q), r*(L)(¢) =L(r(¢)) =L(¢).

Let L € H}(Q); sincer*(L) € H"}(RN), we can defineat € Hl(l]RN) as
the variational solution of-Aw" +w- = r*(L) on RN, and, since* : H Q) —
H-L(RN) is linear continuous, the applicatidn € H=%(Q) — w- € HY(RN) is
linear continuous. Moreover,* is also linear continuous?(Q) — L?(RN) so
that, by the regularity properties ofA+1d on RN, L — w* is linear continuous
L2(Q) — H2(RN).

Define nowR(L) = (0, —O(wk 0 5):Wh). Since the restriction t@ is linear contin-
uousL?(RN) — L?(Q), H (]RN) — HY(Q) andH?(RN) — H2(Q), Ris linear con-
tinuousH 2(Q) —V x (LA(Q) x L(Q) andL3(Q) — W x (HH(@))N x LX(Q).

Moreover, for allL € H-X(Q), ToR(L) = div(-0(w)) + W, = —Awl) +

W'|-Q =r1*(L)jop =L in 2/(Q) (by properties of*), thus also irH1(Q). This con-
cludes the construction &t and this appendix.

REFERENCES

1. J. Bergh and J. Lofstronmterpolation SpacesSpringer-Verlag, 1976.

2. C.Bacuta, J. Bramble and J. Pasciak, New interpolatisuiteand applications to finite element
methods for elliptic boundary value problenisst-West J. Numer. Mat{2001)9, No. 3, 179—
198.

3. J. Bramble, Interpolation between Sobolev Spaces inchifis domains with an application to
multigrid theory,Math. Comp(1995)64, No. 212, 1359-1365.

4. J. Bramble and S. Hilbert, Bounds for a class of linear fionals with applications to Hermite
interpolation,Numer. Math. (1970/1971)16, 362—369.

5. P. Chatzipantelidis and R.D. Lazarov, The finite volunegreint method in nonconvex polygonal
domains. InFinite Volumes for Complex Applications.lHermes Penton Science, Porquerolles,
2002, pp. 171-178.

6. J. Droniou, Non-coercive linear elliptic problenigtential Analysis(2002)17 (2), 181-203.

7. J. Droniou J., PhD Thesis. CMI, Université de ProvenceMarseille I, Juin 2002. Available at
http://wwe- gnB. univ-nrs. fr/ ~droni ou/these/index-en. htn.

8. J. Droniou J. and T. Gallouét, Finite volume methods famvection-diffusion equations with
right-hand side irH 1, Mathematical Modelling and Numerical Analys{2002)36 (4), 705—
724,



32

10.

11.

12.

J. Droniou

R. Eymard, T. Gallouét and R. Herbin, Finite Volume Metsoln: Handbook of Numerical
Analysis Vol. VII, pp. 713-1020. Edited by P.G. Ciarlet and J.L. LéofNorth Holland).

T. Gallouét, R. Herbin and M.H. Vignal, Error estimate the approximate finite volume solu-
tions of convection diffusion equations with Dirichlet, dd@ann or Fourier boundary conditions,
SIAM J. Numer. Anal(2000)37, No. 6, 1935-1972.

J-L. Lions and E. MageneBlon-Homogeneous Boundary Value Problems and Applications
Springer-Verlag, 1972.

I. Mishev, Finite volume element methods for non-dedimitoblemsNumer. Math(1999)83,
No. 1, 161-175.



