On the irreducibility of Deligne-Lusztig varieties - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

On the irreducibility of Deligne-Lusztig varieties

Résumé

Let $G$ be a connected reductive algebraic group defined over an algebraic closure of a finite field and let $F : G \to G$ be an endomorphism such that $F^d$ is a Frobenius endomorphism for some $d \geq 1$. Let $P$ be a parabolic subgroup of $G$ admitting an $F$-stable Levi subgroup. We prove that the Deligne-Lusztig variety $\{gP~|~g^{-1}F(g)\in P\cdot F(P)\}$ is irreducible if and only if $P$ is not contained in a proper $F$-stable parabolic subgroup of $G$.
Fichier principal
Vignette du fichier
dlirr.pdf (118.58 Ko) Télécharger le fichier

Dates et versions

hal-00016980 , version 1 (15-01-2006)
hal-00016980 , version 2 (16-01-2006)
hal-00016980 , version 3 (17-01-2006)
hal-00016980 , version 4 (23-01-2006)
hal-00016980 , version 5 (23-01-2006)
hal-00016980 , version 6 (20-03-2006)
hal-00016980 , version 7 (12-04-2006)

Identifiants

Citer

Cédric Bonnafé, Raphaël Rouquier. On the irreducibility of Deligne-Lusztig varieties. 2006. ⟨hal-00016980v5⟩
63 Consultations
209 Téléchargements

Altmetric

Partager

More