On the irreducibility of Deligne-Lusztig varieties
Résumé
Let $G$ be a connected reductive algebraic group defined over an algebraic closure of a finite field and let $F : G \to G$ be an endomorphism such that $F^d$ is a Frobenius endomorphism for some $d \geq 1$. Let $P$ be a parabolic subgroup of $G$ admitting an $F$-stable Levi subgroup. We prove that the Deligne-Lusztig variety $\{gP~|~g^{-1}F(g)\in P\cdot F(P)\}$ is irreducible if and only if $P$ is not contained in a proper $F$-stable parabolic subgroup of $G$.