The Cotton-Mouton effect of furan and its homologues in gas phase and in solution: interplay of theory and experiment - Archive ouverte HAL
Article Dans Une Revue The Journal of Chemical Physics Année : 2003

The Cotton-Mouton effect of furan and its homologues in gas phase and in solution: interplay of theory and experiment

Résumé

The tensor components of the electric dipole polarizability at a wavelength of 632.8 nm, those of the magnetizability and the anisotropy of the static hypermagnetizability of furan, thiophene, and selenophene are computed using density functional theory (DFT). The polarizable continuum model (PCM) is employed to describe the system in the condensed phase. We can thus compare the temperature dependence of the Cotton–Mouton constant for the three molecules, both in the gas and in the condensed phase, pure liquids, and solutions, with the results of experiment performed using a 17 T radial access Bitter magnet at the Grenoble High Magnetic Field Laboratory. This allows to analyze, in a direct interaction of theory and experiment, the performance of DFT and PCM in describing high order nonlinear mixed electric and magnetic effects in condensed phase.
Fichier principal
Vignette du fichier
Capelli2003.pdf (160.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00015808 , version 1 (19-01-2022)

Licence

Identifiants

Citer

Chiara Cappelli, Antonio Rizzo, Benedetta Mennucci, Jacopo Tomasi, Roberto Cammi, et al.. The Cotton-Mouton effect of furan and its homologues in gas phase and in solution: interplay of theory and experiment. The Journal of Chemical Physics, 2003, 118, pp.10712. ⟨10.1063/1.1571813⟩. ⟨hal-00015808⟩
120 Consultations
78 Téléchargements

Altmetric

Partager

More