Preference Learning in Terminology Extraction: A ROC-based approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Preference Learning in Terminology Extraction: A ROC-based approach

Jérôme Azé
Yves Kodratoff
  • Fonction : Auteur
  • PersonId : 831511
Michèle Sebag
  • Fonction : Auteur
  • PersonId : 836537

Résumé

A key data preparation step in Text Mining, Term Extraction selects the terms, or collocation of words, attached to specific concepts. In this paper, the task of extracting relevant collocations is achieved through a supervised learning algorithm, exploiting a few collocations manually labelled as relevant/irrelevant. The candidate terms are described along 13 standard statistical criteria measures. From these examples, an evolutionary learning algorithm termed Roger, based on the optimization of the Area under the ROC curve criterion, extracts an order on the candidate terms. The robustness of the approach is demonstrated on two real-world domain applications, considering different domains (biology and human resources) and different languages (English and French).
Fichier principal
Vignette du fichier
article-asmda2005.aze_al.pdf (186.14 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00015665 , version 1 (13-12-2005)

Identifiants

Citer

Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag. Preference Learning in Terminology Extraction: A ROC-based approach. 2005, pp.209-219. ⟨hal-00015665⟩
375 Consultations
196 Téléchargements

Altmetric

Partager

More