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Abstract. A key data preparation step in Text Mining, Term Extraction selects
the terms, or collocation of words, attached to specific concepts. In this paper, the
task of extracting relevant collocations is achieved through a supervised learning
algorithm, exploiting a few collocations manually labelled as relevant/irrelevant.
The candidate terms are described along 13 standard statistical criteria measures.
From these examples, an evolutionary learning algorithm termed Roger, based
on the optimization of the Area under the ROC curve criterion, extracts an order
on the candidate terms. The robustness of the approach is demonstrated on two
real-world domain applications, considering different domains (biology and human
resources) and different languages (English and French).
Keywords: Text Mining, Terminology, Evolutionary algorithms, ROC Curve.

1 Introduction

Besides the known difficulties of Data Mining, Text Mining presents spe-
cific difficulties due to the structure of natural language. In particular, the
polysemy and synonymy effects are dealt with by constructing ontologies or
terminologies [Bourigault and Jacquemin, 1999], structuring the words and
their meanings in the domain application. A preliminary step for ontology
construction is to extract the terms, or word collocations, attached to the
concepts defined by the expert [Bourigault and Jacquemin, 1999, Smadja,
1993]. Term Extraction actually involves two steps: the detection of the
relevant collocations, and their classification according to the concepts.

This paper focuses on the detection of relevant collocations, and presents a
learning algorithm for ranking collocations with respect to their relevance, in
the spirit of [Cohen et al., 1999]. An evolutionary algorithm termed Roger,
based on the optimization of the Receiver Operating Characteristics (ROC)
curve [Ferri et al., 2002, Rosset, 2004], and already described in previous
works [Sebag et al., 2003a, Sebag et al., 2003b], is applied to a few collocations
manually labelled as relevant/irrelevant by the expert. The optimization of
the ROC curve is directly related to the recall-precision tradeoff in Term
Extraction (TE).

The paper is organized as follows. Section 2 briefly reviews the main crite-
ria used in TE. Section 3 presents the Roger (ROc-based GEnetic learneR)
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algorithm for the sake of self-containedness, and describes the bagging of
the diverse hypotheses constructed along independent runs. Sections 4 et
5 report on the experimental validation of the approach on two real-world
domain applications, and the paper ends with some perspectives for further
research.

2 Measures for Term Extraction

The choice of a quality measure among the great many criteria used in Text
Mining (see e.g., [Daille et al., 1998, Xu et al., 2002, Roche et al., 2004b])
is currently viewed as a decision making process; the expert has to find the
criterion most suited to his/her corpus and goals. The criteria considered in
the rest of the paper are:

• Mutual Information (MI) [Church and Hanks, 1990]
• Mutual Information with cube (MI3) [Daille et al., 1998]
• Dice Coefficient (Dice) [Smadja et al., 1996]
• Log-likelihood (L) [Dunning, 1993]
• Number of occurrences + Log-likelihood (OccL)1 [Roche et al., 2004a]
• Association Measure (Ass) [Jacquemin, 1997]
• Sebag-Schoenauer (SeSc) [Sebag and Schoenauer, 1988]
• J-measure (J) [Goodman and Smyth, 1988]
• Conviction (Conv) [Brin et al., 1997]
• Least contradiction (LC) [Azé and Kodratoff, 2004]
• Cote multiplier (CM) [Lallich and Teytaud, 2004]
• Khi2 test used in text mining (Khi2) [Manning and Schütze, 1999]
• T-test used in text mining (T test) [Manning and Schütze, 1999]

Vivaldi et al. [Vivaldi et al., 2001] have shown that the search for a quality
measure can be formalized as a supervised learning problem. Considering a
training set, where each candidate term is described from its value for a set of
statistical criteria and labelled by the expert, they used Adaboost [Schapire,
1999] to automatically construct a classifier.

The approach presented in next section mostly differs from [Vivaldi et al.,
2001] as it learns an ordering function (term t1 is more relevant than term
t2) instead of a boolean function (term t is relevant/irrelevant).

3 Learning ranking functions

This section first briefly recalls the Roger (ROc-based GEnetic learneR)
algorithm, used for learning a ranking hypothesis and first described in [Sebag
et al., 2003b, Sebag et al., 2003a]. The n’Roger variant used in this paper
involves two extensions: i) the use of non-linear ranking hypotheses; ii) the

1 OccL is defined by ranking collocations according to their number of occurrences,
and breaking the ties based on the term Log-likelihood.
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exploitation of the ensemble of hypotheses learned along independent runs
of Roger. Using the standard notations, the dataset E = {(xi, yi), i =
1..n,xi ∈ IRd, yi ∈ {−1, +1}} includes n collocation examples, where each
collocation xi is described by the value of d statistical criteria, and its label
yi denotes whether collocation xi is relevant.

3.1 Roger

The learning criterion used in Roger is the Wilcoxon rank test, measuring
the probability that a hypothesis h ranks xi higher than xj when xi is a
positive and xj is a negative example:

W(h) = Pr(h(xi) > h(xj) | yi > yj) (1)

This criterion, with quadratic complexity in the number n of examples2 offers
an increased stability compared to the misclassification rate (Pr(h(xi).yi >

0), with linear complexity in n); see [Rosset, 2004] and references therein.
The Wilcoxon rank test is equivalent to the area under the ROC (Receiver
Operating Characteristics) curve [Jin et al., 2003]. This curve, intensively
used in medical data analysis, shows the trade-off between the true positive
rate (the fraction of positive examples that are correctly classified, aka re-
call) and the false positive rate (the fraction of negative examples that are
misclassified) achieved by a given hypothesis/classifier/learning algorithm.
Therefore, the area under the ROC curve (AUC) does not depend on the
imbalance of the training set [Kolcz et al., 2003], as opposed to other mea-
sures such as Fscore [Caruana and Niculescu-Mizil, 2004]. The ROC curve
also shows the misclassification rates achieved depending on the error cost
coefficients [Domingos, 1999]. For these reasons, [Bradley, 1997] argues the
comparison of the ROC curves attached to two learning algorithms to be
more fair and informative, than comparing their misclassification rates only.
Accordingly, the area under the ROC curve defines a new learning criterion,
used e.g. for the evolutionary optimization of neural nets [Fogel et al., 1995],
or the greedy search of decision trees [Ferri et al., 2002].

In an earlier step [Sebag et al., 2003b], the search space H considered is
that of linear hypotheses (H = IRd). To each vector w in IRd is attached
hypothesis hw with hw(x) =< w, x >, where < w, x > denotes the scalar
product of w and x. Hypothesis h defines an order on IRd, which is evaluated
from the Wilcoxon rank test on the training set E (Eq. 1), measured after
cross-validation.

The combinatorial optimization problem defined by Eq. 1, thus mapped
onto a numerical optimization problem, is tackled by Evolution Strategies
(ES). ES are the Evolutionary Computation algorithms that are best suited
to parameter optimization; the interested reader is referred to [Bäck, 1995]

2 Actually, the computational complexity is in O(n log n) since W(h) is propor-
tional to the sum of ranks of the positive examples.
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for an extensive presentation. In the rest of the paper, Roger employs a
(µ + λ)-ES, involving the generation of λ offspring from µ parents through
uniform crossover and self-adaptive mutation, and deterministically selecting
the next µ parents from the best µ parents + λ offspring.

3.2 Extensions

An extension first presented in [Jong et al., 2004] concerns the use of non-
linear hypotheses. Exploiting the flexibility of Evolutionary Computation,
the search space H is set to IRd × IRd; each hypothesis h = (w, c), composed
of a weight vector w and a center c, associates to x the weighted L1-distance
of x and c:

h(x = (x1, ..., xd)) =

d∑

i=1

wi|xi − ci|

It must be noted that this representation allows Roger for searching (a lim-
ited kind of) non linear hypotheses, by (only) doubling the size of the linear
search space. Previous work has shown that non-linear Roger significantly
outperforms linear Roger for some text mining applications [Roche et al.,
2004a].

A new extension, inspired from ensemble learning [Breiman, 1998], ex-
ploits the hypotheses h1, . . . , hT learned along T independent runs of Roger.
The aggregation of the (normalised) hi, referred to as H , associates to each
example x the median value of {h1(x), . . . , hT (x)}.

4 Goals of Experiments and Experimental Setting

The goal of experiments is twofold. On one hand, the ranking efficiency
of n’Roger will be assessed and compared to that of state-of-the-art su-
pervised learning algorithms, specifically Support Vector Machines with lin-
ear, quadratic and Gaussian kernels, using SVMTorch implementation3 with
default options. Due to space limitations, only ensemble-based non-linear
Roger, termed n’Roger, will be considered.

On the other hand, the results provided by n’Roger will be interpreted
and discussed with respect to their intelligibility. The experimental setting
is as follows. An experiment is a 5-fold stratified cross-validation process;
on each fold, i) SVM learns a hypothesis hSV M ; ii) Roger is launched 21
times, and the bagging of the 21 learned hypotheses constitutes the hypoth-
esis hn′Roger learned by n’Roger; iii) both hypotheses are evaluated on the
fold test set and the associated ROC curve (True Positive Rate vs False Pos-
itive Rate) is constructed. The AUC curves are averaged over the 5 folds.

3 http://www.idiap.ch/machine learning.php?content=Torch/en OldSVMTorch.txt
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The overall results reported in the next section are averaged over 10 ex-
periments (10 different splits of the dataset into 5 folds).

The Roger parameters are as follows: µ = 20; λ = 100; the self adapta-
tive mutation rate is 1.; the uniform crossover rate is .6.

5 Empirical validation

After describing the datasets, this section reports on the comparative per-
formances of the algorithms, and inspects the results actually provided by
n’Roger.

5.1 Datasets

In both domains, the data preparation step [Roche et al., 2004b] allows for
categorizing the word collocations depending on the grammatical tag of the
words (e.g. Adjective, Noun).

A first corpus related to Molecular Biology involves 6119 paper abstracts
in English (9,4 Mo) gathered from queries on Medline4. The 1028 Noun-
Noun collocations occurring more than 4 times are labelled by the expert;
the dataset includes a huge majority of relevant collocations (Table 1).

A second corpus related to Curriculum Vitae5 involves 582 CVs in French
(952 Ko). The “Frequent CV” dataset includes the 376 Noun-Adjective collo-
cations with at least 3 occurrences (two hours labelling required), with a huge
majority of relevant collocations. The “Infrequent CV” dataset includes the
2822 Noun-Adjective collocations occurring once or twice (two days labelling
required), with a significantly different distribution of relevant/irrelevant col-
locations (Table 1). Examples of relevant vs irrelevant collocations are re-
spectively compétences informatiques and euros annuels;

although both collocations make sense, only the first one conveys useful
information for the management of human resources.

Collocations # collocations Relevant Irrelevant
Molecular Biology 1028 90.9% 9.1%

CV, Frequent collocations 376 85.7% 14.3%
CV, Infrequent collocations 2822 56.6% 43.4%

Table 1. Relevant and irrelevant collocations.

5.2 Ranking accuracy

After the experimental setting described in section 4, Table 2 compares the
average AUC achieved for n’Roger and SVMTorch with linear, Gaussian

4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
5 Courtesy of the VediorBis Foundation.
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and quadratic kernels. On these domain applications, both supervised learn-
ing approaches significantly improve on the statistical criteria standalone
(Table 3). Further, n’Roger improves significantly on SVM using any ker-
nel, excepted on the Infrequent CV dataset. A tentative interpretation for
this result is based on the fact that this dataset is the most balanced one;
SVM has some difficulties to cope with imbalanced datasets.

Corpus n’Roger SVM (∼ 1.5s/fold)
(∼ 17s/fold) Linear Gaussian Quadratic

Molecular Biology (MB) 0.73 ± 0.05 0.50 ± 0.08 0.46 ± 0.08 0.59 ± 0.08
Frequent CV (F-CV) 0.64 ± 0.08 0.48 ± 0.08 0.48 ± 0.08 0.50 ± 0.10
Infrequent CV (I-CV) 0.73 ± 0.01 0.72 ± 0.01 0.72 ± 0.02 0.71 ± 0.02

Table 2. Ranking accuracy (Area under the ROC curve) of learning algo-
rithms.

Corpus MI MI3 Dice L OccL Ass J Conv SeSc CM LC Ttest Khi2

MB 0.30 0.35 0.31 0.42 0.57 0.31 0.59 0.35 0.43 0.31 0.46 0.31 0.31
F-CV 0.31 0.40 0.39 0.43 0.58 0.32 0.58 0.39 0.40 0.31 0.44 0.36 0.36
I-CV 0.29 0.30 0.33 0.30 0.37 0.29 0.50 0.40 0.39 0.30 0.45 0.30 0.30

Table 3. Ranking accuracy (Area under the ROC curve) of statistical criteria.

A more detailed picture is provided by Fig. 1, showing the ROC curve
associated to SVM, n’Roger and the OccL and J measures on the Frequent

CV dataset on a representative fold (termed RF in this paper). Interestingly,
the major differences between n’Roger and the other measures are seen at
the beginning of the curve, i.e. they concern the top ranked collocations.
Typically, a recall (True Positive Rate) of 50% is obtained for 18% false
positive with n’Roger, against 23% with OccL, 31% with J measures and
68% for quadratic SVM6.

In summary, n’Roger improves the accuracy of the top-ranked colloca-
tions, and therefore the satisfaction and productivity of the expert if he/she
only examines the top results. A proof of principle of the generality of the
approach has been presented in [Roche et al., 2004b], as the ranking func-
tion learned from one corpus, in one language, was found to outperform the
standard statistical criteria when applied on the other corpus, in another
language.

5.3 Analysis of a ranking function

As shown in [Jong et al., 2004], the weights associated to distinct features by
Roger can provide some insights into the relevance of the features. Accord-
ingly, the hypotheses constructed by n’Roger are examined.

Fig. 2 displays the weights and center coordinates of all 13 features (sec-
tion 2) for a representative Roger hypothesis h (closest to the ensemble

6 SVM ROC Curves is not significant as its AUC is lower than .5 on this test fold.
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Fig. 2. Weights (wj , cj) on the frequent CVs (for the learn set of RF ).

n’Roger hypothesis H) learned on a fold of the Frequent CV dataset. Al-
though AUC(h) is lower than that of H (.61 vs .64), it still outpasses that of
standalone features (statistical criteria).

As could have been expected, Roger detects that the mutual informa-
tion (MI) criterion does badly (AUC(MI)= .31, Table 3), with a high cen-
ter cMI and weight wMI values (collocations with high MI are less rele-
vant, everything else being equal). Inversely, as the OccL criterion does well
(AUC(OccL) = .58), the center cOccL

is high associated with a highly neg-
ative weight wOccL

(collocations with low OccL are less relevant, everything
else being equal) (see Tab. 4).

Although these tendencies could have been exploited by linear hypotheses,
this is no longer the case for the J criterion (AUC(J) = .58): interestingly,
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the center cJ takes on a medium value, with a high negative weight wJ . This
is interpreted as collocations with either too low or too high values of J ,
are less relevant everything else being equal. The current limitation of the
approach is to provide a “conjunctive” description of the region of relevant
collocations7.

MI OccL

wMI = 0.68 wOccL
= -0.41 n’Roger

cMI = 0.59 cOccL
= 0.65

Collocation Rank Rank Rank
expérience commerciale 297 258 1
formation informatique 300 123 2
société informatique 298 299 3
gestion informatique 299 76 4

colonne morris 1 211 90
bouygue telecom 2 213 298

fromagerie riches-mont 3 212 297
sauveteur secouriste 4 151 296

expérience professionelle 146 1 300
ressource humaine 44 2 299

baccalauréat professionel 193 3 22
baccalauréat scientifique 148 4 58

Table 4. Rank of relevant collocations given with 2 measures (MI and OccL) and
n’Roger. For each measure the weights (wi, ci) used by n’Roger are given (on
the learn set of RF ).

6 Discussion and Perspectives

The main claim of the paper is that supervised learning can significantly con-
tribute to the Term Extraction task in Text Mining. Some empirical evidence
supporting this claim have been presented, related to two corpora with differ-
ent domain applications and languages. Based on a domain- and language-
independent description of the collocations along a set of standard statistical
criteria, and on a few collocations manually labelled as relevant/irrelevant by
the expert, a ranking hypothesis is learned.

The ranking learner n’Roger used in the experiments is based on the
optimization of the combinatorial Wilcoxon rank test criterion, using an evo-
lutionary computation algorithm. Two new features, the use of non-linear
hypotheses and the exploitation of the ensemble of hypotheses learned along
independent runs of Roger, have been exploited in n’Roger.

Further research is concerned with enriching the description of colloca-
tions, e.g. adding typography-related indications (e.g. distance to the closest
typographic signs) or distance to the closest Noun, possibly providing ad-
ditional cues on the role of relevant collocations. Another perspective is to
extend Roger using multi-modal and multi-objective evolutionary optimiza-
tion [Deb, 2001], e.g. enabling to characterize several types of relevant collo-
cations in a single run. A long-term goal is to study along a variety of domain
applications and expert goals, the eventual regularities associated to i) the

7 In the sense that a single center c is considered, though the condition far from
ci actually corresponds to a disjunction.
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(domain and language independent) description of the relevant collocations;
ii) the ranking hypotheses.
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