An introspective algorithm for the integer determinant - Archive ouverte HAL
Communication Dans Un Congrès Année : 2006

An introspective algorithm for the integer determinant

Résumé

We present an algorithm computing the determinant of an integer matrix A. The algorithm is introspective in the sense that it uses several distinct algorithms that run in a concurrent manner. During the course of the algorithm partial results coming from distinct methods can be combined. Then, depending on the current running time of each method, the algorithm can emphasize a particular variant. With the use of very fast modular routines for linear algebra, our implementation is an order of magnitude faster than other existing implementations. Moreover, we prove that the expected complexity of our algorithm is only O(n^3 log^{2.5}(n ||A||) ) bit operations in the dense case and O( Omega n^{1.5} log^2(n ||A||) + n^{2.5}log^3(n||A||) ) in the sparse case, where ||A|| is the largest entry in absolute value of the matrix and Omega is the cost of matrix-vector multiplication in the case of a sparse matrix.
Fichier principal
Vignette du fichier
IntrospectiveDet.pdf (330.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00014044 , version 1 (17-11-2005)
hal-00014044 , version 2 (18-11-2005)
hal-00014044 , version 3 (30-05-2006)
hal-00014044 , version 4 (19-10-2006)
hal-00014044 , version 5 (13-09-2007)

Identifiants

Citer

Jean-Guillaume Dumas, Anna Urbanska. An introspective algorithm for the integer determinant. Transgressive Computing 2006, Apr 2006, Grenade, Spain. pp.185-202. ⟨hal-00014044v5⟩

Collections

UGA CNRS LMC-IMAG
216 Consultations
285 Téléchargements

Altmetric

Partager

More