
HAL Id: hal-00014044
https://hal.science/hal-00014044v5

Submitted on 13 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An introspective algorithm for the integer determinant
Jean-Guillaume Dumas, Anna Urbanska

To cite this version:
Jean-Guillaume Dumas, Anna Urbanska. An introspective algorithm for the integer determinant.
Transgressive Computing 2006, Apr 2006, Grenade, Spain. pp.185-202. �hal-00014044v5�

https://hal.science/hal-00014044v5
https://hal.archives-ouvertes.fr

ha
l-

00
01

40
44

, v
er

si
on

 5
 -

 1
3

Se
p

20
07

An introspective algorithm for the integer

determinant

Jean-Guillaume Dumas Anna Urbańska

Laboratoire Jean Kuntzmann, UMR CNRS 5224
Université Joseph Fourier, Grenoble I
BP 53X, 38041 Grenoble, FRANCE.

{Jean-Guillaume.Dumas;Anna.Urbanska}@imag.fr
ljk.imag.fr/membres/{Jean-Guillaume.Dumas;Anna.Urbanska}

Abstract

We present an algorithm for computing the determinant of an in-
teger matrix A. The algorithm is introspective in the sense that it
uses several distinct algorithms that run in a concurrent manner. Dur-
ing the course of the algorithm partial results coming from distinct
methods can be combined. Then, depending on the current running
time of each method, the algorithm can emphasize a particular vari-
ant. With the use of very fast modular routines for linear algebra, our
implementation is an order of magnitude faster than other existing
implementations. Moreover, we prove that the expected complexity
of our algorithm is only O

(
n3 log2.5 (n‖A‖)

)
bit operations in the case

of random dense matrices, where n is the dimension and ‖A‖ is the
largest entry in the absolute value of the matrix.

1 Introduction

One has many alternatives to compute the determinant of an integer matrix.
Over a field, the computation of the determinant is tied to that of matrix
multiplication via block recursive matrix factorizations [19]. On the one
hand, over the integers, a näive approach would induce a coefficient growth
that would render the algorithm not even polynomial. On the other hand,
over finite fields, one can nowadays reach the speed of numerical routines
[12].

Therefore, the classical approach over the integers is to reduce the com-
putation modulo some primes of constant size and to recover the integer

1

determinant from the modular computations. For this, at least two variants
are possible: Chinese remaindering and p-adic lifting.

The first variant requires either a good a priori bound on the size of the
determinant or an early termination probabilistic argument [13, §4.2]. It
thus achieves an output dependant bit complexity of O

(
log (|det (A) |)

(
nω + n2 log (‖A‖)

))

where ω is the exponent of matrix multiplication 1. Of course, with the co-
efficient growth, the determinant size can be as large as O (n log(n‖A‖))
(Hadamard’s bound) thus giving a large worst case complexity. The algo-
rithm is Monte Carlo type, its deterministic (always correct) version exists
and has the complexity of O

((
nω+1 + n3 log(‖A‖)

)
log(n‖A‖)

)
bit opera-

tions.
The second variant uses system solving and p-adic lifting [6] to get a

potentially large factor of the determinant with a O
(
n3 log2(n‖A‖)

)
bit

complexity. Indeed, every integer matrix is unimodularly equivalent to a
diagonal matrix S equal to diag (s1, . . . , sn), where si divides si+1. This
means that there exist integer matrices U, V with detU,det V = ±1, such
that A = USV . The si are called the invariant factors of A. In the presence
of several matrices we will also use the notation si(A). Solving a linear
system with a random right hand side reveals sn as the common denominator
of the solution vector entries with high probability, see [24, 1].

The idea of [1] is thus to combine both approaches, i.e. to approximate
the determinant by system solving and recover only the remaining part
(det(A)/sn) via Chinese remaindering. The Monte Carlo version of Chinese
remaindering leads to an algorithm with the expected output-dependant

bit complexity of O
(
nω log

(

|det(A)
sn

|
)

+ n3 log2(n‖A‖)
)
. We use the notion

of the expected complexity to emphasize that it requires E
(

log
(

sn

s̃n

))

to

be O(1), where s̃n is the computed factor of sn and E denotes the expected
value computed over all algorithm instances for a given matrix A.

Then G. Villard remarked that at most O
(√

log (|det (A) |)
)

invariant

factors can be distinct and that in some propitious cases we can expect
that only the last O (log(n)) of those are nontrivial [17]. This remark, to-
gether with a preconditioned p-adic solving to compute the i-th invariant

factor lead to a O
(

n2+ ω
2 log1.5(n‖A‖) log0.5(n)

)

worst case Monte Carlo

algorithm. Without fast matrix multiplication, the complexity of the al-
gorithm becomes O

(
n3.5 log2.5(n‖A‖) log2(n)

)
. The expected number of

invariant factors for a set of matrices with entries chosen randomly and uni-

1the value of ω is 3 for the classical algorithm, and 2.375477 for the Coppersmith-
Winograd method, see [4]

2

formly from the set of consecutive integers {0, 1 λ− 1} can be proven
to be O (log(n)). Thus, we can say that the expected complexity of the
algorithm is O

(
n3 log2(n‖A‖) log(n) logλ(n)

)
. Here, the term expected is

used in a slightly different context than in algorithm [1] and describes the
complexity in the case where the matrix has a propitious property i.e., the
small number of invariant factors.

In this paper we will prefer to use the notion of the expected rather than
average complexity. Formally, to compute the average complexity we have
to average the running time of the algorithm over all input and argorithm
instances. The common approach is thus to compute the expected outputs
of the subroutines and use them in the complexity analysis. This allows us to
deal easily with complex algorithms with many calls to subroutines which
depend on randomization. The two approaches are equivalent when the
dependency on the expected value is linear, which is often the case. However,
we can imagine more complex cases of adaptive algorithms where the relation
between average and expected complexity is not obvious. Nevertheless, we
believe that the evaluation of the expected complexity gives a meaningful
description of the algorithm. We emphasize the fact, that the propitious
input for which the analysis is valid can often be quickly detected at runtime.

Note that the actual best worst case complexity algorithm for dense ma-
trices is O∼ (n2.7 log(‖A‖)

)
, which is O∼ (n3.2 log(‖A‖)

)
without fast ma-

trix multiplication, by [21]. We use the notion O∼(Nα log(‖A‖)), which
is equivalent to O(Nα logβ(N) log(‖A‖)) with some β ≥ 0. Unfortunately,
these last two worst case complexity algorithms, though asymptotically bet-
ter than [17], are not the fastest for the generic case or for the actually
attainable matrix sizes. The best expected complexity algorithm is the
Las Vegas algorithm of Storjohann [26] which uses an expected number of
O
(
nω log(n‖A‖) log2(n)

)
bit operations. In section 5 we compare the per-

formance of this algorithm (for both certified and not certified variants) to
ours, based on the experimental results of [27].

In this paper, we propose a new way to extend the idea of [25, 28] to get
the last consecutive invariant factors with high probability in section 3.2.
Then we combine this with the scheme of [1].

This combination is made in an adaptive way. This means that the algo-
rithm will choose the adequate variant at run-time, depending on discovered
properties of its input. More precisely, in section 4, we propose an algorithm
which uses timings of its first part to choose the best termination. This par-
ticular kind of adaptation was introduced in [23] as introspective; here we
use the more specific definition of [5].

3

In section 4.2 we prove that the expected complexity of our algorithm is

O
(

n3 log2(n‖A‖)
√

log(n)
)

bit operations in the case of dense matrices, gaining a log1.5(n) factor com-
pared to [17].

Moreover, we are able to detect the worst cases during the course of the
algorithm and switch to the asymptotically fastest method. In general this
last switch is not required and we show in section 5 that when used with
the very fast modular routines of [9, 12] and the LinBox library [10], our
algorithm can be an order of magnitude faster than other existing imple-
mentations.

A preliminary version of this paper was presented in the Transgressive
Computing 2006 conference [14]. Here we give better asymptotic results
for the dense case, adapt our algorithm to the sparse case and give more
experimental evidences.

2 Base Algorithms and Procedures

In this section we present the procedures in more detail and describe their
probabilistic behavior. We start by a brief description of the properties of
the Chinese Remaindering loop (CRA) with early termination (ET) (see
[7]), then proceed with the LargestInvariantFactor algorithm to compute sn

(see [1, 17, 25]). We end the section with a summary of ideas of Abbott et
al. [1], Eberly et al. and Saunders et al. [25].

2.1 Output dependant Chinese Remaindering Loop (CRA)

CRA is a procedure based on the Chinese remainder theorem. Determi-
nants are computed modulo several primes pi. Then the determinant is
reconstructed modulo p0 · · · pt in the symmetric range via the Chinese re-
construction. The integer value of the determinant is thus computed as soon
as the product of pi exceeds 2|det (A) |. We know that the product is suffi-
ciently big if it exceeds some upper bound on this value or, probabilistically,
if the reconstructed value remains identical for several successive additions
of modular determinants. The principle of this early termination (ET) is
thus to stop the reconstruction before reaching the upper bound, as soon as
the determinant remains the same for several steps [7].

4

Algorithm 2.1 is an outline of a procedure to compute the determinant
using CRA loops with early termination, correctly with probability 1 − ǫ.
We start with a lemma.

Lemma 2.1. Let H be an upper bound for the determinant (e.g. H can
be the Hadamard’s bound: |det (A) | ≤ (

√
n‖A‖)n

). Suppose that distinct
primes pi greater than l > 0 are randomly sampled from a set P with |P | ≥
2⌈logl (H)⌉. Let rt be the value of the determinant modulo p0 · · · pt computed
in the symmetric range. We have:

(i) rt = det (A), if t ≥ N =

{

⌈logl (|det (A) |)⌉ if det (A) 6= 0

0 if det (A) = 0
;

(ii) if rt 6= det (A), then there are at most R = ⌈logl

(
|det(A)−rt|

p0···pt

)

⌉ primes

pt+1 such that rt = det (A) mod p0 · · · ptpt+1;

(iii) if rt = rt+1 = · · · = rt+k and R′(R′−1)...(R′−k+1)
(|P |−t−1)...(|P |−t−k) < ǫ, where R′ =

⌈logl
H+|rt|
p0p1...pt

⌉, then P (rt 6= det (A)) < ǫ.

(iv) if rt = rt+1 = · · · = rt+k and k ≥ ⌈ log(1/ǫ)
log(P ′)−log(logl(H))⌉, where P ′ =

|P | − ⌈logl (H)⌉, then P (rt 6= det (A)) < ǫ.

Proof. For (i), notice that −⌊p0···pt

2 ⌋ ≤ rt < ⌈p0···pt

2 ⌉. Then rt = det (A)
as soon as p0 · · · pt ≥ 2|det (A) |. With l being the lower bound for pi this
reduces to t ≥ ⌈logl |det (A) |⌉ when det (A) 6= 0.
For (ii), we observe that det (A) = rt + Kp0 . . . pt and it suffices to estimate
the number of primes greater than l dividing K.
For (iii) we notice that k primes dividing K are to be chosen with the prob-

ability
(R

k)
(|P |−(t+1)

k)
. Applying the bound R′ for R leads to the result.

For (iv) we notice that the latter is bounded by
(

R′

P ′

)k
since R′ ≤ ⌈logl

(
2H
2

)
⌉ ≤

|P ′|. Solving for k the inequality
(

R′

P ′

)k
< ǫ gives the result.

The two last points of the theorem give the stopping condition for early
termination. The condition (iii) can be computed on-the-fly (as in Algorithm
2.1). As a default value and for simplicity (iv) can also be used.

To compute the modular determinant in algorithm 2.1 we use the LU
factorization modulo pi. Its complexity is O

(
nω + n2 log(‖A‖)

)
.

Early termination is particularly useful in the case when the computed
determinant is much smaller than the a priori bound. The running time of
this procedure is output dependant.

5

Algorithm 2.1 Early Terminated CRA

Require: n × n integer matrix A.
Require: 0 < ǫ < 1.
Require: H - Hadamard’s bound (H = (

√
n‖A‖)n

)
Require: l > 0, a set P of random primes greater than l, |P | ≥ 2⌈logl (H)⌉.
Ensure: The integer determinant of A, correct with probability at least

1 − ǫ.

1: i = 0;
2: repeat

3: Choose uniformly and randomly a prime pi from the set P ;
4: P = P\{pi}
5: Compute det (A) mod pi;
6: Reconstruct ri, the determinant modulo p0 · · · pi; // by Chinese

remaindering
7: k = max{t : ri−t = · · · = ri}; R′ = ⌈logl

H+|ri|
p0p1...pi−k

⌉;
8: Increment i;

9: until
R′(R′−1)...(R′−k+1)
(|P |−i+k−1)...(|P |−i) < ǫ or

∏
pi ≥ 2H

2.2 Largest Invariant Factor

A method to compute sn for integer matrices was first stated by V. Pan
[24] and later in the form of the LargestInvariantFactor procedure (LIF)
in [1, 17, 7, 25]. The idea is to obtain a divisor of sn by computing a
rational solution of the linear systems Ax = b. If b is chosen uniformly
and randomly from a sufficiently large set of contiguous integers, then the
computed divisor can be as close as possible to sn with high probability.
Indeed, with A = USV , we can equivalently solve SV x = U−1b for y = V x,
and then solve for x. As U and V are unimodular, the least common multiple
of the denominators of x and y, d(x) and d(y) satisfies d(x) = d(y)|sn.

Thus, solving Ax = b enables us to get sn with high probability. The cost
of solving using Dixon p-adic lifting [6] is O

(
n3 log2(n‖A‖) + n log2(‖b‖)

)
as

stated by [22].
The algorithm takes as input parameters β and r which are used to

control the probability of correctness; r is the number of successive solvings
and β is the size of the set from which the values of a random vector b are
chosen, i.e. a bound for ‖b‖. With each system solving, the output s̃n of the
algorithm is updated as the lcm of the current solution denominator d(x)
and the result obtained so far.

6

The following theorem characterizes the probabilistic behavior of the LIF
procedure.

Theorem 2.2. Let A be a n× n matrix, H its Hadamard’s bound, r and β
be defined as above. Then the output s̃n of Algorithm LargestInvariantFactor
of [1] is characterized by the following properties.

(i) If r = 1, p is a prime, l ≥ 1, then P
(

pl|sn

s̃n

)

≤ 1
β ⌈

β
pl ⌉;

(ii) if r = 2, β = ⌈log (H)⌉ then E
(

log
(

sn

s̃n

))

= O (1) ;

(iii) if r = 2, β = 6+ ⌈2 log (H)⌉ then sn = s̃n with probability at least 1/3;

(iv) if r = ⌈2 log (log (H))⌉, β ≥ 2 then E
(

log
(

sn

s̃n

))

= O (1) ;

(v) if r = ⌈log (log (H)) + log
(

1
ǫ

)
⌉, 2 | β and β ≥ 2 then sn = s̃n with

probability at least 1 − ǫ;

Proof. The proofs of (i) and (iv) are in [1][Thm. 2, Lem. 2]. The proof
of (iii) is in [17][Thm. 2.1]. To prove (ii) we adapt the proof of (iii). The
expected value of the under-approximation of sn is bounded by the formula

∑

p|sn

⌊logp(sn)⌋
∑

k=1

log (p)

(
1

β
⌈ β

pk
⌉
)2

,

where the sum is taken over all primes dividing sn. As 1
β ⌈

β
pk ⌉ is bounded by

1
β + 1

pk this can be further expressed as

∑

p prime

∞∑

k=1

log (p)
1

p2k
+

2

β

∑

p|sn

∞∑

k=1

log (p)
1

pk
+

1

β2

∑

p|sn

⌊logp(sn)⌋
∑

k=1

log (p) ≤

∑

p prime

log (p)
1

p2 − 1
+

2

β

∑

p|sn

log (p)
1

p − 1
+

1

β2

∑

p|sn

log (p) logp (sn)

1.78 +
2 log (sn)

β
+

log2 (sn)

β2
≤ 5 ∈ O (1) .

To prove (v) we slightly modify the proof of (iv) in the following manner.
From (i) we notice that for every prime p dividing sn, the probability that
it divides the missed part of sn satisfies:

P
(

p | sn

s̃n

)

≤
(

1

2

)r

.

7

As there are at most log (H) such primes, we get

P (sn = s̃n) ≥ 1−log (H) (1/2)r ≥ 1−log (H) 2− log(log(H))−log(1
ǫ) = 1−log (H)

1

log (H)
ǫ.

Remark 2.3. Theorem 2.2 enables us to produce a LIF procedure, which

gives an output s̃ close to sn with the time complexity O
(

n3 (log (n) + log (‖A‖))2
)

(see (ii)).

2.3 Abbott-Bronstein-Mulders, Saunders-Wan and Eberly-
Giesbrecht-Villard ideas

Now, the idea of [1] is to combine both the Chinese remainder and the LIF
approach. Indeed, one can first compute sn and then reconstruct only the
remaining factors of the determinant by reconstructing det (A) /sn. The ex-
pected complexity of this algorithm is O

(
nω log (|det(A)/sn|) + n3 log2(n‖A‖)

)

which is unfortunately O∼ (nω+1
)

in the worst case.
Now Saunders and Wan [25, 28] proposed a way to compute not only sn

but also sn−1 (which they call a bonus) in order to reduce the size of the
remaining factors det(A)/ (snsn−1). The complexity doesn’t change.

Then, Eberly, Giesbrecht and Villard have shown that for the dense case
the expected number of non trivial invariant factors is small, namely less
than 3⌈logλ (n)⌉ + 29 if the entries of the matrix are chosen uniformly and
randomly in a set of λ consecutive integers [17]. As they also give a way
to compute any si, this leads to an algorithm with the expected complexity
O
(
n3 log2(n‖A‖) log (n) logλ (n)

)
.

Our analysis yields that the bound on the expected number of invariant
factors for

a random dense matrix can be refined as O
(
log0.5 (n)

)
.

Then our idea is to extend the method of Saunders and Wan to get
the last invariant factors of A slightly faster than by [17]. Moreover, we
will show in the following sections that we are able to build an adaptive
algorithm solving a minimal number of systems.

The analysis also yields that it should be possible to change a log (n)
factor in the expected complexity of [17] to a log(log (n)). This would
require a small modification in the algorithm and a careful analysis. As-
suming that the number of invariant factors is the expected i.e. it equals
N = O (log (n)), we can verify the hypothesis by computing the (n−N−1)th

8

factor. If it is trivial, the binary search is done among O (log (n)) el-
ements and there are only O (log (n)) factors to compute, which allows
to lessen the probability of correctness of each OIF procedure. Thus, in
the propitious case, the expected complexity of the algorithm would be
O
(
n3 log2(n‖A‖) logλ (n) log2(log(n))

)
. However, this cannot ce considered

as the average complexity in the ordinary sense since we do not average over
all possible inputs in the analysis.

3 Computing the product of O (log(n)) last invari-

ant factors

3.1 On the number of invariant factors

The result in [17] says that a n×n matrix with entries chosen randomly and
uniformly from a set of size λ has the expected number of invariant factors
bounded by 3⌈logλ (n)⌉ + 29. In search for some sharpening of this result
we prove the following theorems.

Theorem 3.1. Let A be an n×n matrix with entries chosen randomly and
uniformly from the set of contiguous integers {−⌊λ

2 ⌋ . . . ⌈λ
2 ⌉}. Let p be a

prime. The expected number of non-trivial invariant factors of A divisible
by p is at most 4.

Theorem 3.2. Let A be an n×n matrix with entries chosen randomly and
uniformly from the set {−⌊λ

2 ⌋ . . . ⌈λ
2 ⌉}. The expected number of non trivial

invariant factors of A is at most
⌈√

2 logλ (n)
⌉

+ 3.

In order to prove the theorems stated above, we start with the following
lemmas.

Lemma 3.3. If j >1 the sum
∑

8<p<λ

(
1

λ
⌈λ

p
⌉
)j

over primes p can be upper

bounded by
(

1
2

)j
.

Proof. We will consider separately the primes from the interval λ
2k+1 ≤ p <

λ
2k , k = 0, 1, . . . kmax. The value of kmax is computed from the condition

p > 8 and is equal to ⌈log (λ)⌉ − 4. For the kth interval ⌈λ
p ⌉ is less than or

equal to 2k+1. In each interval there are at most ⌈ λ
2k+2 ⌉ odd numbers and

at most λ
2k+2 primes: if in the interval there are more than 3 odd numbers,

at least one of them is divisible by 3 and is therefore composite. For this to

9

happen it is enough that ⌈ λ
2kmax+2 ⌉ ≥ 3, which is the case. We may therefore

calculate:

∑

8<p<λ

(
1

λ
⌈λ

p
⌉
)j

≤
⌈log(λ)⌉−4
∑

k=0

λ

2k+2

(
2k+1

λ

)j

≤
⌈log(λ)⌉−4
∑

k=0

1

2

(
2k+1

λ

)j−1

=
1

2λj−1

⌈log(λ)⌉−4
∑

k=0

(

2k+1
)j−1

≤ 1

2λj−1

⌈log(λ)⌉−4
∑

k=0

2k+1

j−1

≤ 1

2λj−1

(

2⌈log(λ)⌉−2
)j−1

≤ 1

2λj−1

(

2log(λ)−1
)j−1

=

(
1

2

)j

.

Remark 3.4. For λ = 2l, k can be allowed from 0 up to l − 3, instead of
⌈log (λ)⌉ − 4 and we can include more primes in the sum. As a result we

obtain an inequality
∑

4<p<2l

(
1
2l ⌈2l

p ⌉
)j

≤
(

1
2

)j
.

Lemma 3.5. Let A be a k × n, k ≤ n integer matrix with entries chosen
uniformly and randomly from the set {−⌊λ

2 ⌋ . . . ⌈λ
2 ⌉} . The probability that

rankp(A), the rank modulo p of A, is j, 0 < j ≤ k is less than or equal to

P (rankp(A) = j) ≤
j−1
∏

i=0

(1 − α(n−i)) · β(n−j)(k−j) ·
(

1

1 − β

)max k−j−1,0

(1 + β . . . βk−j)

≤ β(n−j)(k−j)

(
1

1 − β

)k−j

, (1)

where α = 1
λ+1⌊λ+1

p ⌋ and β = 1
λ+1⌊λ+1

p ⌋.
The proof of the lemma is given in the appendix A.1.

Proof. (Theorem 3.1)
The idea of the proof is similar to that of [17][Thm. 6.2].

For k ≥ j let MDepk (p, j) denote the event that the first k columns of
A mod p have rank at most k − j over Zp. By Ij (p) we denote the event,
that at least j invariant factors of A are divisible by p. This implies that the
first columns of A have rank at most n− j mod p, or that MDepn−j+k (p, k)
has occurred for all k = 0 . . . j. This proves in particular that P (Ij (p)) ≤
P (MDepn (p, j)).

In order to compute the probability P (MDeps (p, j)), s ≥ j we notice
that it is less than or equal to

P (MDeps (p, j)) ≤ P
(
MDepj (p, j)

)
+

s∑

k=j+1

P
(
MDepk (p, j) ∧ ¬MDepk−1 (p, j)

)

10

Surely, MDepj (p, j) means that the first j columns of A are 0 mod p,

and consequently the probability is less than or equal to βjn
p , where the value

βp = 1
λ+1⌈λ+1

p ⌉ is a bound on the probability that an entry of the matrix

is determined modulo p and is set to (λ + 1)−1 if p ≥ λ + 1 or less than or
equal 2

p+1 in the case p < λ + 1.

We are now going to find P
(
MDepk (p, j) ∧ ¬MDepk−1 (p, j)

)
for k > j.

Since the event MDepk−1 (p, j) did not occur, Ak−1 has rank modulo p at
least (k − j) and of course at most (k − 1). For MDepk,j to occur it must be
exactly (k − j). This means that we can rewrite P

(
MDepk (p, j) ∧ ¬MDepk−1 (p, j)

)

as

P (MDepk (p, j) | rankp (Ak−1) = k − j) · P (rankp (Ak−1) = k − j) ,

where rankp (Ak−1) denotes the rank modulo p of submatrix Ak−1 of A,
which consists of its first (k − 1) columns.

Since the rank modulo p of Ak−1 is equal to k − j, there exists a set of
k − j rows Lk−j which has full rank mod p. This means that we can choose
k− j entries of the kth column randomly but the remaining n−k+ j entries
will be determined modulo p. This leads to an inequality

P (MDepk (p, j) | rankp (Ak−1) = k − j) ≤ βn−k+j
p .

By Lemma 3.5 we have P(rank(Ak−1 = k−j) ≤
(

1
1−βp

)j−1
β

(n−k+j)(j−1)
p .

Finally, we get

P
(
MDepk (p, j) ∧ ¬MDepk−1 (p, j)

)
≤
(

1

1 − βp

)j−1

β(n−k+j)j
p (2)

and

P (MDeps (p, j)) ≤
(

1

1 − βp

)j−1 s∑

k=j

β(n−k+j)j
p <

(
1

1 − βp

)j−1

βj(n−s+j)
p

1

1 − βj
p

.

(3)
The expected number of invariant factor divisible by p < λ verifies:

n∑

j=0

j (P (Ij (p)) − P (Ij+1 (p))) =

n∑

j=1

P (Ij (p)) ≤
n∑

j=1

MDepn (p, j)

≤
n∑

j=1

(
p + 1

p − 1

)j−1(2

p + 1

)j2

(p + 1)j

(p + 1)j − 2j

11

The latter is decreasing in p and therefore less than its value at p = 2, which
is lower than 3.46.

For p ≥ λ + 1 the result is even sharper:

n∑

j=0

j (P (Ij (p)) − P (Ij+1 (p))) ≤
n∑

j=1

(
λ

λ − 1

)j−1(1

λ

)j2

λj

λj − 1
≤ 1

λ − 1

1

1 − 1
(λ−1)λ2

the latter being lower than 1.18 for λ ≥ 1.

Proof. (Theorem 3.2)
In addition to MDepk (p, j) introduced earlier, let Depk denote an event

that the first k columns of A are linearly dependent (over rationals) and
MDepk (j), an event that either of MDepk (p, j) occurred.

Recall from [17, §6] that

P(Dep1) ≤ (λ + 1)−n

P
(
Depk ∧¬Depk−1

)
≤ P

(
Depk | ¬Depk−1

)
≤ (λ + 1)−n+k−1.

This gives P(Depk) ≤ 1
(λ+1)n +· · ·+ 1

(λ+1)n−k+1 which is less than 1
(λ+1)n−k+1

λ+1
λ .

As in the previous proof, the probability that the number of non trivial
invariant factors is at least j (event Ij) is lower than P

(
MDepn−j+k(k) ∨ Depn−j+1

)

for all k = 0 . . . j. The latter can be transformed to P
(
(MDepn−j+k(k) ∧ ¬Depn−j+1) ∨ Depn−j+1

)
,

and both P
(
MDepn−j+k(k) ∧ ¬Depn−j+1

)
and P

(
Depn−j+1

)
can be treated

separately.
To compute P

(
MDepn−j+k(k) ∧ ¬Depn−j+1

)
we will sum P

(
MDepn−j+k(p, k)

)

over all possible primes. Since Depn−j+1 does not hold, there exists a
(n − j + 1) × (n − j + 1) non-zero minor, and we have to sum over the
primes which divide it. We will treat separately primes p < λ + 1 and
p ≥ λ + 1. Once again we set βp = 2

p+1 for p < λ + 1 and βp = 1
λ+1 for

p ≥ λ.
By (3) we have

∑

p<λ

P(MDepn−j+k(p, k)) <

(
1

1 − β2

)k−1

βkj
2

1

1 − βk
2

+

(
1

1 − β3

)k−1

βkj
3

1

1 − βk
3

+

(
1

1 − β5

)k−1

βkj
5

1

1 − βk
5

+

(
1

1 − β7

)k−1

βkj
7

1

1 − βk
7

+
∑

8<p<λ

(
1

1 − βp

)k−1

βkj)
p

1

1 − βk
p

.

12

This transforms to

∑

p<λ

P(MDepn−j+k(p, k)) ≤ 3k−1

(
2

3

)kj 3k

3k − 2k
+ 2k−1

(
1

2

)kj 2k

2k − 1

+

(
3

2

)k−1(1

3

)kj 3k

3k − 1
+

(
4

3

)k−1(1

4

)kj 4k

4k − 1

+

(
6

5

)k−1 6k

6k − 1

∑

8<p<λ+1

(
1

λ + 1
⌈λ + 1

p
⌉
)kj

.

Thanks to Lemma 3.3, the sum
∑

8<p<λ+1

(
1

λ+1⌈λ+1
p ⌉
)kj

can be bounded

by
(

1
2

)kj
.

For primes p ≥ λ + 1 we should estimate the number of primes di-
viding the (n − j + 1)th minor. By the Hadamard’s bound (notice that
Depn−j+1 does not hold), the minors are bounded in absolute value by
(

(n − j + 1)
(

λ+1
2)
)2
)n−j+1

2
. Therefore the number of primes p ≥ λ + 1

dividing the minor is at most n
2

(
logλ+1(n) + 2

)
. Summarizing,

P
((

MDepn−j+k (k) ∧ ¬Depn−j+1

)
∨ Depn−j+1

)
≤
(

2

3

)kj 32k−1

3k − 2k
+

(
1

2

)kj 22k−1

2k − 1

+

(
3

2

)k−1(1

3

)kj 3k

3k − 1
+

(
4

3

)k−1(1

4

)kj 4k

4k − 1
+

(
6

5

)k−1 6k

6k − 1

(
1

2

)kj

+

+
n

2

(
logλ+1(n) + 2

)
(

λ + 1

λ

)k−1 1

(λ + 1)jk
(λ + 1)k

(λ + 1)k − 1
+

λ

λ − 1
λ−(n−j+1).

We can now compute the expected number of non trivial invariant fac-
tors.

Let us fix h = max(2,
⌈√

2 logλ+1 (n)
⌉
). We have that in particular,

P(Ij) is less than P
(
(MDepn−j+h(h) ∧ ¬Depn−j+1) ∨ Depn−j+1

)
. We can

check that h2 ≥ logλ+1 (n) + logλ+1

(
logλ+1 (n) + 2

)
. This gives also (λ +

1)h
2

> n
(
logλ+1 (n) + 2

)
and

1 >
n

2

(
logλ+1 (n) + 2

)
(

λ + 1

λ

)h−1 (λ + 1)2h

((λ + 1)h − 1)2
1

(λ + 1)h(h+1)
.

The expected number of non trivial invariant factors is bounded by:

h∑

j=1

1 +

n∑

j=h+1

P
(
(MDepn−j+h (h) ∨ ¬Depn−j+1) ∧ Depn−j+1

)

13

which in turn is bounded by

h +
(n∑

j=h+1

(
2

3

)hj 32h−1

3h − 2h
+

(
1

2

)hj 22h−1

2h − 1
+

(
3

2

)h−1(1

3

)hj 3h

3h − 1

+

(
4

3

)h−1(1

4

)hj 4h

4h − 1
+

(
6

5

)h−1 6h

6h − 1

(
1

2

)hj

+
n

2

(
logλ+1(n) + 2

)
(

λ + 1

λ

)h−1 1

(λ + 1)hj

(λ + 1)h

(λ + 1)h − 1
+

(λ + 1)

λ
(λ + 1)−(n−j+1)

)

≤ h +
33h−1

(3h − 2h)2

(
2

3

)h(h+1)

+
23h−1

(2h − 1)2

(
1

2

)h(h+1)

+

(
3

2

)h−1 32h

(3h − 1)2

(
1

3

)h(h+1)

+

(
4

3

)h−1 42h

(4h − 1)2

(
1

4

)h(h+1)

+

(
6

5

)h−1 6h

6h − 1

2h

2h − 1

(
1

2

)h(h+1)

+
n

2

(
logλ+1(n) + 2

)
(

λ + 1

λ

)h−1 (λ + 1)2h

((λ + 1)h − 1)2
1

(λ + 1)h(h+1)
+

(
λ + 1

λ

)2 1

λ + 1

≤ h + f(n, λ) +
n

2

(
logλ+1 (n) + 2

)
(

λ + 1

λ

)h−1 (λ + 1)2h

((λ + 1)h − 1)2
1

(λ + 1)h(h+1)

≤ h + f(n, λ) + 1.

where f (n, λ) ≤ 33h−1

(3h−2h)2

(
2
3

)h(h+1)
+ 23h−1

(2h−1)2

(
1
2

)h(h+1)
+
(

3
2

)h−1 32h

(3h−1)2

(
1
3

)h(h+1)

+
(

4
3

)h−1 42h

(4h−1)2

(
1
4

)h(h+1)
+
(

6
5

)h−1 6h

6h−1
2h

2h−1

(
1
2

)h(h+1)
+
(

λ+1
λ

)2 1
λ+1 < 2 as

soon as λ ≥ 2. On the other hand f(n, 1) =
(

2
2−1

)2
1
2 ≤ 2 which leads to

the final result.

3.2 Extended Bonus Ideas

In his thesis [28], Z. Wan introduces the idea of computing the penulti-
mate invariant factor (i.e. sn−1) of A while computing sn using two system
solvings. The additional cost is comparatively small, therefore sn−1 is re-
ferred to as a bonus. Here, we extend this idea to the computation of the
(n − k + 1)th factor with k solvings in the following manner:

1. The (matrix) solution of AX = B, where B is a n × k multiple right
hand side can be written as s̃−1

n N where s̃n approximates sn (A) and
the factors of N give some divisors of the last k invariant factors of A:
see lemma 3.6.

14

2. We are actually only interested in getting the product of these invari-
ant factors which we compute as the gcd of the determinants of two
perturbed k × k matrix R1N and R2N .

3. Then we show that repeating this solving twice with two distinct right-
hand sides B1 and B2 is in general sufficient to remove those extra
factors and to get a very fine approximation of the actual product of
the last k invariants: see lemma 3.10.

3.2.1 The last k invariant factors

Let X be a (matrix) rational solution of the equation AX = B, where
B = [bi], i = 1, . . . , k, is a random n × k matrix. Then the coordinates of
X have a common denominator s̃n and we let N = [ni], i = 1, . . . , k, denote
the matrix of numerators of X. Thus, X = s̃−1

n N and gcd (Nij , s̃n) = 1.
Following Wan, we notice that sn (A)A−1 is an integer matrix, the Smith

form of which is equal to

diag

(
sn (A)

sn (A)
,

sn (A)

sn−1 (A)
, . . . ,

sn (A)

s1 (A)

)

.

Therefore, we may compute sn−k+1 (A) when knowing sk

(
sn (A) A−1

)
. The

trick is that the computation of A−1 is not required: we can perturb A−1

by right multiplying it by B. Then, sk

(
sn (A) A−1B

)
is a multiple of

sk

(
sn (A)A−1

)
. Instead of sn (A) A−1B we would prefer to use s̃nA−1B

which is already computed and equal to N .
The relation between A and N is as follows.

Lemma 3.6. Let X = s̃−1
n N , gcd (s̃n, N) = 1 be a solution to the equation

AX = B, where B is n× k matrix. Let R be a random k × n matrix. Then

s̃n

gcd (si (N) , s̃n)

∣
∣
∣
∣
sn−i+1 (A) and

s̃n

gcd (si (RN) , s̃n)

∣
∣
∣
∣
sn−i+1 (A) , i = 1 . . . , k.

Proof. The Smith forms of sn (A) A−1B and N are connected by the relation
sn(A)

s̃n
si (N) = si

(
sn (A) A−1B

)
, i = 1, . . . , k. Moreover, si (N) is a factor of

si (RN). We notice that sn(A)
si(sn(A)A−1B) equals s̃n

si(N) , and thus s̃n

gcd(si(RN),s̃n)

is an (integer) factor of sn−i+1 (A). Moreover, the under-approximation is
solely due to the choice of B and R.

Remark 3.7. Taking gcd (si (RN) , s̃n) is necessary as s̃n

si(RN) may be a ra-
tional number.

15

3.2.2 Removing the undesired factors

In fact we are interested in computing the product πk = snsn−1 · · · sn−k+1 (A)
of the k biggest invariant factors of A. Then, following the idea of [1], we
would like to reduce the computation of the determinant to the computation
of det(A)

π̃k
, where π̃k is a factor of πk that we have obtained. We can compute

π̃k as s̃k
n/ gcd

(
µk (RN) , s̃k

n

)
, where µk = s1s2 · · · sk is the product of the k

smallest invariant factors.
We will need a following technical lemma. Its proof is given in the

appendix, see A.5.

Lemma 3.8. Let V be an k × n matrix, such that the Smith form of V is
trival. Let M be an n×k matrix with entries chosen randomly and uniformly
from the set {a, a + 1 . . . a + S − 1}, the probability that pl < S divides the
determinant det(V M) is at most 3

pl .

In the following lemmas we show that by repeating the choice of matrix
B and R twice, we will omit only a finite number of bits in πk. We start
with a remark, which is a modification of [28, Lem. 5.17]. We ramaind that
the order modulo p (ordp) of a value is the expotent of the highest power of
p dividing it.

Remark 3.9. For every n × n matrix M there exist a k × n, k ≤ n, matrix
V with trivial Smith form, such that for any n × k matrix B: if the order

modulo p ordp

(
µk(MB)
µk(M)

)

is greater than l then also ordp (det (V B)) is greater

than l.

Lemma 3.10. Let A be an n×n integer matrix and Bi (resp.Ri), i = 1, 2 be
n×k (resp.k × n), matrices with the entries uniformly and randomly chosen
from the set S of S contiguous integers, k ≥ 2. Denote by µk the product
s1 . . . sk of the k smallest invariant factors and by πk the product of the k
biggest factors of A. Then for M = sn (A)A−1

E

(

log

(

πk (A)

sn (A)k
gcd

(

µk(R1MB1), µk(R2MB2), sn(A)k
)
))

∈ O (1)+O

(
k3 log4 (H)

S

)

where H is the Hadamard bound for A.

Proof. First, notice that πk(A)

sn(A)k = 1
µk(M) . Therefore

16

the expected value is less than or equal

∑

l

∑

p|sn(A)

log (p) lP
(

ordp

(

gcd
(
µk(R1MB1), µk(R2MB2), sn(A)k

)

µk(M)

)

= l

)

=
∑

l

∑

p|sn(A)

log(p)P
(

ordp

(

gcd
(
µk(R1MB1), µk(R2MB2), sn(A)k

)

µk(M)

)

≥ l

)

≤
∑

l

∑

p|sn(A)

log(p)Πi=1,2P
(

ordp

(
µk(RiMBi)

µk(M)

)

≥ l

)

≤
∑

l

∑

p|sn(A)

log(p)Πi=1,2

l∑

k=0

P

ordp

(
µk(MBi)
µk(M)

)

≥ k ∧
ordp

(
µk(RiMBi)
µk(MBi)

)

≥ (l − k)

 .

Thanks to remark 3.9 we can link this probability to the probability that
pl divides the determinant of V Bi or RiU , for matrices V,U which have a
trivial Smith form.

We only consider p|sn (A).
For pl < S Lemma 3.8 gives

l∑

k=0

P
(

ordp

(
µk(MBi)

µk(M)

)

≥ k ∧ ordp

(
µk(RiMBi)

µk(MBi

)

≥ (l − k)

)

≤

l∑

k=0

P (Bi : ordp (det (V Bi)) ≥ k)P (Ri : ordp (det (RiU)) ≥ k) ≤ (l + 1)
3

pl
.

Now the expected size of the under-estimation is less than or equal to

log (2)

(

3 +

∞∑

l=4

(

(l + 1)2
3

2l

)2
)

+ log (3)

(

2 +

∞∑

l=3

(

(l + 1)
3

3l

)2
)

+ log (5)

(

1 +
∞∑

l=2

(
3

5l

)2
)

+ log (7)

(∞∑

l=2

(
3

7l

)2
)

+
∑

5<p≤H

∞∑

l=1

log (p)

(
3

pl

)2

≤ 4.36 + 2.24 + 1.14 + 0.77 +
∑

5<p≤H

log (p)
−27p2 + 36p4 + 9

(p − 1)3 (p + 1)3

≤ 8.51 +

∫ ∞

10
log (x)

−27x2 + 36x4 + 9

(x − 1)3 (x + 1)3
dx ≤ 8.51 + 11.97

which is O (1).

17

For pl ≥ S the probability P
(
pl|det (M)

)
is less than P

(

p⌊logp(S)⌋|det (M)
)

and consequently can be bounded by 3min
(

1
p , p

S

)

which is less than 3√
S
.

The expected size of the underestimation is

∑

p|sn(A)

k logp(H)
∑

l=⌈logp(S)⌉
(l + 1)2 log (p)

(
3√
S

)2

≤
∑

p|sn(A)

9 log (p)

S

(13

6
k logp (H) +

3

2

(
k logp (H)

)2

+
1

3

(
k logp (H)

)3) ≤ k log2 (H)
9

S

(
13

6
+

3

2
k log (H) +

1

3
k2 log2 (H)

)

≤ 13k3 log4 (H)

S
.

This is O
(

k3 log4(H)
S

)

, which gives the result.

Another method to compute the product µk of some first invariant fac-
tors of a rectangular matrix N would be to compute several minors of the
matrix and to take the gcd of them. In our scheme we can therefore get rid of
matrix R which would enable us to use a smaller bound on S = O (k log (H))
and still preserve a small error of estimation due to the choice of B. How-
ever, it is difficult to judge the impact of choosing only a few minors (instead
of all). An experimental evaluation whether for random A and random B
the minors of N are sufficiently ”randomly” distributed remains to be done.

4 Introspective Algorithm

Now we should incorporate Algorithm 2.1 and the ideas presented in sections
2.2 and 3.2 in the form of an introspective algorithm.

Indeed, we give a recipe for an auto-adaptive program that implements
several algorithms of diverse space and time complexities for solving a par-
ticular problem. The best path is chosen at run time, from a self-evaluation
of the dynamic behavior (here we use timings) while processing a given in-
stance of the problem. This kind of auto-adaptation is called introspective
in [5]. In the following, CRA loop refers to Algorithm 2.1, slightly modi-
fied to compute det (A) /K. If we re-run the CRA loop, we use the already
computed modular determinants first whenever possible.

Informally, the general idea of the introspective scheme is:

1. Initialize the already computed factor K of the determinant to 1;

2. Run fast FFLAS LU routines in the background to get several modular
determinants di = det (A) mod pi.

18

3. From time to time try to early terminate the Chinese remainder re-
construction of det (A) /K.

4. In parallel or in sequential, solve random systems to get the last in-
variant factors one after the other.

5. Update K with these factors and loop back to step (2) until an early
termination occurs or until the overall timing shows that the expected
complexity is exceeded.

6. In the latter exceptional case, switch to a better worst case complexity
algorithm.

More precisely, the full algorithm in shown on page 20.

4.1 Introspectiveness: dynamic choice of the thresholds

The introspective behavior of algorithm 4.1 depends paramountly on the
number of system solvings and on the size of the random entries.

The parameter imax controls the maximal total number of system solv-
ings authorized before switching to a best worst-case complexity algorithm.
The choice of imax has to be discussed in terms of the expected number of
invariant factors of A.

First, depending on the size of the set from which we are sampling the
random right-hand sides, a minimum number of solvings is required to get
a good probability of correctness. We thus define this to be imin.

In the dense case, the (ii) part of theorem 2.2 states that imin = 2
is sufficient. Part (iv) part of theorem 2.2 prompts us to take imin =
⌈2 log (log (H))⌉ if we want to use a smaller β.

Then this number imin has also to be augmented if the expected number
of non trivial invariant factors is higher. We thus set

imax = max (imin,E (#factors (A))) .

In the dense case E (#factors (A)) is less than ⌈
√

2 logλ (n)⌉ + 3 as shown
in theorem 3.2 .

Now, random vectors are randomly sampled a set of size S. For a dense
matrix A we need S = 13E (#factors (A))3 (⌈log (H)⌉)4 to get a good prob-
ability of success as shown in theorem 2.2(ii) and lemma 3.10.

Additionally, (see lemma 3.10) we should ensure that πk is computed
twice using different matrices B. We therefore introduce the variables kdone

and kapp which store respectively the number of factors computed at least
twice (up to O(1)) or once (thus only approximated).

19

Algorithm 4.1 Extended Bonus Determinant Algorithm

Require: An integer n × n matrix A.
Require: H - bound for det(A) (can be the Hadamard’s bound)
Require: 0 < ǫ < 1, an error tolerance, S =

13E (#factors (A))3 (⌈log (H)⌉)4 , l > 1.
Require: A stream S of numbers randomly chosen from the set of S con-

tiguous integers.
Require: A set P of random primes greater than l, |P | ≥ ⌈2logl(H)⌉, P ′ =

|P | − logl(H)
Ensure: The integer determinant of A, correct with probability at least

1 − ǫ.

1: k = log (1/ǫ) /⌈log
(

P ′

logl(H)

)

⌉; see Lem. 2.1(iv)

2: for i = 1 to k do

3: run the CRA loop for det (A) ; //see Alg. 2.1
4: if early terminated then Return determinant end if

5: end for

6: imax = imax (A) , imin = imin (A); //see §4.1
7: π̃0 = 1;K = 1;
8: kdone = 0; kapp = 0; j = 0;
9: while kdone ≤ imax do

10: i = kdone + 1;
11: while i ≤ imax do

12: Generate b
(j)
i a random vector of dimension n from the stream S;

13: Compute s̃n by solving Ax
(j)
i = b

(j)
i ; //see Section 2.2

14: if i = 1 then ;π̃1 = s̃n;
15: else

16: N := s̃nX, where X = [x
(j)
l]l=1,...i; //see Section 3.2;

17: Generate a random i × n matrix R.
18: π̃i = s̃i+1

n

gcd(det(RN),s̃i+1
n)

//determinant computation

19: end if

20: K = lcm (π̃i,K); π̃i = K;
21: Resume CRA looping on d = det (A) /K for at most the time of

one system solving;
22: if early terminated then Return d · K; end if

23: if i > imin then

24: if π̃i = π̃i−1 then

25: if i > kapp then

26: kdone = kapp; kapp = i; j = j + 1 mod 2; break;
27: else

28: Resume CRA looping on d = det (A) /K for at most the time
of (imax − i) system solvings;

29: if early terminated then Return d · K;
30: else i = imax; end if

31: end if

32: end if

33: end if

34: i=i+1;
35: end while

36: end while

37: run an asymptotically better integer determinant algorithm;

20

4.2 Correctness and complexity

Theorem 4.1. Algorithm 4.1 correctly computes the determinant with prob-
ability 1 − ǫ.

Proof. Termination is possible only by the early terminated CRA loop or
by the determinant algorithm used in the last step. The choice of k from
theorem 2.1(iv) and the choice of the determinant algorithm from [20, 27]
ensures that 1 − ǫ probability is obtained.

The following theorem gives the complexity of the algorithm.

Theorem 4.2. The expected complexity of Algorithm 4.1 in the case of a
dense matrix is

O
(

nω log (1/ǫ) + n3 (log n + log (‖A‖))2 log0.5 (n)
)

.

The worst case complexity depends on the algorithm used in the last step.

Proof. To analyze the complexity of the algorithm we will consider the com-
plexity of each step.

For a dense matrix A, with k defined as in the line 1, the complexity of
initial CRA iterations is O (nω log (1/ǫ)). The while loop is constructed in
this way that we perform at most 2imax (see subsection 4.1 for the bound
on imax) iterations, where log (‖B‖) = O (log(n) log(log(‖A‖))). Therefore

the cost is O
(

n3 (log(n) + log(‖A‖))2
√

log(n)
)

. Considering the time limit,

this is also the time of all CRA loop iterations. To compute π̃i we
need niω−2 bit operations. Then, the computation of the i × i de-

terminant of RN by a deterministic algorithm (i.e, deterministic CRA)
costs O(iω(log(i) + n(log(n‖R‖ · ‖A‖ · ‖B‖)))) bit operations, which for
i = 2, . . . , imax with imax being O (log (n)) is O∼ (n) and thus negligible.

With the expected number of invariant factors bounded by imax (see
Thm.3.2), it is expected that the algorithm will return the result before the
end of the while loop, provided that the under-estimation of π̃imax is not
too big. But by updating s̃n O

(
log0.5 (n)

)
times and updating the product

π̃imax twice, it is expected that the overall under-estimation will be O(1) (see
Theorem 2.2 and Lemma 3.10), thus it is possible to recover it by several
CRA loop iterations.

For the last step for a dense matrix we propose the O∼ (n3.2 log (‖A‖)
)

algorithm of Kaltofen [21] or O∼ (nω log(‖A‖)) algorithm of Storjohann [27].
We refer to [20] for a survey on complexity of determinant algorithms.

21

5 Experiments and Further Adaptivity

5.1 Experimental results

The described algorithm is implemented in the LinBox exact linear algebra
library [10]. In a preliminary version imax is set to 2 or 1 and the switch
in the last step is not implemented. This is however enough to evaluate the
performance of the algorithm and to introduce further adaptive innovations.

All experiments were performed on 1.3 GHz Intel Itanium2 processor
with 128 GB (196 GB since september 2006) of memory disponsible.

For a generic case of random dense matrices our observation is that
the bound for the number of invariant factors is quite crude. Therefore
the algorithm 4.1 is constructed in the way that minimizes the number of
system solving to at most twice the actual number of invariant factors for a
given matrix. Under the assumption that the approximations s̃n and π̃i are
sufficient, this leads to a quick solution.

Indeed for random dense matrices, the algorithm nearly always stopped
with early termination after one system solving. This together with fast
underlying arithmetics of FFLAS [9] accounted for the superiority of our
algorithm as seen in figure 1 and 2 where comparison of timings for different
algorithms is presented. Notice, that our algorithm beats the uncertified (i.e.
Monte Carlo type) version of the algorithm of [26] which claims currently
the best theoretical complexity. This proves that adaptive approach is a
powerful tool which allow us to construct the algorithms very fast in practice

Thank to the introspective approach our algorithm can detect the cases
when the number of invariant factors is small and equal to k < imax . One

can therefore argue the complexity of our algorithm is in fact O
(

n3 (log (n) + log (‖A‖))2 k
)

,

where k is the number of invariant factors. To test the performance of our
algorithm to detect propitious cases we have run it on various sets of struc-
tured and engineered matrices. The adaptive approach allowed us to obtain
very good timings which motivates us to encourage the use of this algorithms
in the situations which go further beyond the dense case.

Figure 3 we present the results of the determinant computation for sparse
matrices of N. Trefethen2.

The results encouraged us to construct a sparse variant of our algorithm,
which we shortly describe in Section 5.2. Figure 3 gives a comparison of
the performance of sparse and dense variants. We used the sparse solver of
[18]. Using the algorithm with the dense solver outperforms using the sparse

2http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Matrices/Trefethen/

22

 32768

 1024

 32

 1

 8192 4096 2048 1024 512

T
im

e
(s

)

n

NTL (Monte Carlo)
LU−CRT

[Strojohann−Giorgi−Olesh (Certified)]
[Strojohann−Giorgi−Olesh (Uncertified)]

Magma (Monte Carlo)
Hybrid algorithm

Figure 1: Comparison of our algorithm with other existing implementation.
Tested on random dense matrices of the order 400 to 10000, with entries
{-8,-7,. . . ,7,8} Using fast modular routines puts our algorithm several times
ahead of the others. Scaling is logarithmic.

 0.01

 0.1

 1

 10

 100

 1000

 100 1000

T
im

e
(s

)

n

NTL (Monte Carlo)
Abbott’s LIF

Hybrid algorithm

Figure 2: Comparison of our algorithm with early terminated Chinese re-
maindering algorithm (LU) and the algorithm of Abbott et al. [1] (LIF).
Tested on random dense matrices of the order 40 to 1000, with entries {-
100,-99,. . . ,99,100}. When matrix size exceeds 80 the adaptive algorithm
wins. Scaling is logarithmic.

23

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000

T
im

e
(s

)

n

Sparse
Dense

NTL (Monte Carlo)

Figure 3: Comparison of sparse and dense variants of our determinant algo-
rithm for Trefethen’s matrices. Scaling is logarithmic.

solver by a factor of 3.3 to 2.3, and decreasing with the matrix size n. Thanks
to the space-efficiency of the sparse algorithm we are able to compute the
determinant for 20000× 20000 matrix for which the dense solver requires to
much memory.

In figure 4 we compare the performance of dense and sparse variants of
the algorithm with the CRA algorithm (sparse variant) for random sparse
matrices. The matrices are very sparse (20 non-zero entries per row). To
ensure that the determinant is non-zero we put 1 on the diagonal. Both dense
and sparse variants of the algorithm have better running times than the
CRA, which proves that we can detect propitious cases for sparse matrices.
Furthermore, sparse variant is best for bigger matrices and again lets us
solve the problem when the dense variant fails due to unsufficient memory.

In Table 1 we give the timings for the algorithm with imax = 1 and 2.
The algorithms was run on a set of specially engineered matrices which have
the same Smith form as diag{1, 2 . . . n} and the number of invariant factors
of about n

2 . We notice that the algorithm with imax = 1 (which is in fact
a slightly modified version of Abbott’s algorithm [1]) runs better for small
n. This motivated us to develop an even more adaptive approach, which we
describe in Section 5.3.

5.2 Sparse matrix case

When trying to adapt our determinant algorithm to the sparse case, the
immediate problem is the bound for the expected number of invariant fac-

24

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000

T
im

e
(s

)

n

Sparse
Dense

App NTL (Monte Carlo)

Figure 4: Comparison of sparse and dense variants of our determinant al-
gorithm with the CRA algorithm for random sparse matrices. Scaling is
logarithmic. The running time of the CRA algorithm has been approxi-
mated based on the timings for one iteration

n imax = 1 imax = 2 n imax = 1 imax = 2

100 0.17 0.22 300 5.65 5.53
120 0.29 0.33 350 9.76 9.64
140 0.48 0.55 400 14.99 14.50
160 0.73 0.78 600 57.21 54.96
180 1.07 1.16 800 154.74 147.53
200 1.49 1.51 1000 328.93 309.61
250 2.92 3.00 2000 3711.26 3442.29

Table 1: Comparison of the performance of Algorithm 4.1 with imax set to
1 and 2 on engineered matrices.

25

tors. On can easily notice, that for a matrix with k non-zero entries per
row, chosen uniformly and randomly from the set of S contiguous integers,
the expected number of invariant factors divisible by pl can be bounded
from below by n 1

S ⌊ S
pl ⌋ and thus is linear with n. Thus, we cannot use the

same argument to estimate the expected number of system solvings as in
the dense case.

One solution would be to consider the number of ”big” invariant fac-
tors, i.e. the number of invariant factors which are bigger than a certain
parameter C. The parameter has to be chosen in a way, that the product
of all smaller factors can be computed by modular CRA loop quicker than
another rational solution of a system of equation. We could exploit here
the difference in complexity between system solving and one modular rou-
tine which is O∼ (n3

)
to O(nω) (or O(n1.5Ω) to O(Ωn) in the case of sparse

procedures). This could enable us to recover O
(
n3−ω

)
(O(n0.5)) bits of the

determinant by running modular routines without exceeding the cost of one
linear system solving. This adaptive solution is already implemented in the
dense version of the algorithm, which motivated us to run it on potentially
unsuitable matrices. When comparing the times for the CRA algorithm and
our algorithm applied to sparse matrices (however, without exploiting their
sparsity) we decided that there is a need for a ”sparse” version of our algo-
rithm, which will take into account the sparse structure of the matrices in
the subroutines.

In what follows we will shortly present the sparse counterparts of the
subroutines used, give their complexities and discuss some modification of
the parameters if needed. We assume that the cost of one matrix-vector
product is Ω = O (n).

Instead of the dense LU, sparse elimination can be used in practice e.g.
for extremely sparse matrices [11]. In general, black box method are pre-
ferred. The idea is to precondition the matrix so that its characteristic
polynomial equals its minimal polynomial [16, 2]; and then to compute the
minimal polynomial via Wiedemann’s algorithm [29]. The complexity of
the sparse modular determinant computation is then O (Ωn) [11, Table 4].
Adaptive solutions exist [15].

For solving a sparse system of linear equations the solver of [18] can be
used. By similar reasoning as in [22], the cost of solving Ax = b for a sparse
matrix A is that of O

(
n1.5 log(n‖A‖) + n0.5 log(‖b‖)

)
matrix-vector prod-

ucts and O
(
n2 log(n‖A‖)

(
n0.5 + log(‖A‖)

)
+ n2 log(‖b‖) log(n‖A‖) + n log2(‖b‖)

)

additional arithmetic operations.
If ‖b‖ is O

(
n0.5

)
in size and Ω = O(n), this means that the complexity

of computing sn is O
(
n2 log(n‖A‖)(n0.5 + log(‖A‖))

)
bit operations.

26

Currently known sparse determinant algorithms that can be used in the
worst-case step include the CRA loop (with the complexity O (Ωn log(|det(A)|)))
and the algorithm of [17]. By moving to the sparse solver in [17] we can ob-
tain an algorithm with the worst time complexity of O

(
n3 log1.5(n‖A‖) log (‖A‖) log2 (n)

)
.

All in all, by moving to the sparse procedures, we obtain the algorithm
with the complexity O

(
min

(
k
(
Ωn1.5 log(n‖A‖) + n2.5 log(n‖A‖) log(‖A‖)

)
, n2 log(n‖A‖)Ω

))

where k is the number of invariant factors. In the propitious case where k is
smaller than O (

√
n) we obtain an algorithm with the running time better

than the currently known algorithms.

5.3 More adaptivity

We start with a simple remark. For every matrix, with each step, the size
of sn−i decreases whilst the cost of its computation increases. In Table 1,
this accounts for better performance of Abbott’s algorithm, which computes
only sn, in the case of small n. For bigger n calculating sn−1 starts to pay
out. The same pattern repeats in further iterations.

The switch between winners in Table 1 can be explained by the fact that,
in some situations, obtaining sn−i by LU -factorization (which costs

log(sn−i)
log(l)

the time of LU) outperforms system solving. Then, this also holds for all
consecutive factors and the algorithm based on CRA wins. The condition
can be checked a posteriori by approximating the time of LUs needed to
compute the actual factor. We can therefore construct a condition that
would allow us to turn to the CRA loop in the appropriate moment. This
can be done by changing the condition in line 27 (π̃i = π̃i−1) to

log

(
π̃i

π̃i−1

)

≤ time (solving)

time (LU)
log (l) ,

if the primes used in the CRA loop are greater than l. This would result
with a performance close to the best and yet flexible.

If, to some extend, sn−i could be approximated a priori, this condition
could be checked before its calculation. This would require a partial factor-
ization of sn−i+1 and probability considerations as in section 3.1 and [17].

6 Conclusions

In this paper we have presented an algorithm computing the determinant
of an integer matrix. In the dense case we proved that the expected com-
plexity of our algorithm is O

(
n3 log2(n‖A‖) log0.5 (n)

)
and depends mainly

27

on the cost of the system solving procedure used and the expected number
of invariant factors. Our algorithm uses an introspective approach so that

its actual expected complexity is only O
(

n3 (log(n) + log(‖A‖))2 k
)

if the

number k of invariant factors is smaller than a priori expected but greater
than imin; The actual running time can be even smaller, assuming that any
under-estimation resulting from probabilistically correct procedures can be
compensated sooner than expected. Moreover, the adaptive approach allows
us to switch to the algorithm with best worst case complexity if it happens
that the number of nontrivial invariant factors is unexpectedly large. This
adaptivity, together with very fast modular routines, allows us to produce
an algorithm, to our knowledge, faster by at least an order of magnitude
than other implementations.

Ways to further improve the running time are to reduce the number
of iterations in the solvings or to group them in order to get some block
iterations as is done e.g. in [3]. A modification to be tested, is to try to
reconstruct sn with only some entries of the solution vector x = n/d.

Parallelization can also be considered to further modify the algorithm.
Of course, all the LU iterations in one CRA step can be done in parallel.
An equivalently efficient way is to perform several p-adic liftings in parallel,
but with less iterations [8]. There the issue is to perform an optimally
distributed early termination.

References

[1] J. Abbott, M. Bronstein, T. Mulders. Fast deterministic computation of
determinants of dense matrices. In Proc. of ACM International Sympo-
sium on Symbolic and Algebraic Computation (ISAAC’1999), 197-204,
ACM Press, 1999.

[2] L. Chen, W. Eberly, E. Kaltofen, B.D. Saunders, W.J. Turner, G. Vil-
lard. Efficient matrix preconditioners for black box linear algebra. In
Linear Algebra and Applications, pp. 343–344. 2002.

[3] Z. Chen and A. Storjohann. A BLAS based C library for exact linear
algebra on integer matrices. In Proc. of ACM International Symposium
on Symbolic and Algebraic Computation (ISAAC’2005), 92–99, ACM
Press, 2005.

28

[4] D. Coppersmith, S. Winogard. Matrix multiplication via arithmetic
progression. In Proc. 19th Annual ACM Symposium of Theory of Com-
puting, 1-6, 1987.

[5] V.-D. Cung, V. Danjean, J.-G. Dumas, T. Gautier, G. Huard, B. Raffin,
C. Rapine, J.-L. Roch, D. Trystram, Adaptive and hybrid algorithms:
classification and illustration on triangular system solving, in: Proceed-
ings of Transgressive Computing 2006, Granada, España. 2006.

[6] J. Dixon. Exact Solution of Linear Equations Using P -Adic Expansions.
In Numer.Math. 40(1), 137-141, 1982.

[7] J.G. Dumas, D. Saunders, G. Villard. On Efficient Sparse Integer Ma-
trix Smith Normal Form Computations. In Journal of Symbolic Com-
putations. 32 (1/2), 71-99, 2001.

[8] J.G. Dumas, W. Turner, Z. Wan. Exact Solution to Large Sparse Integer
Linear Systems. ECCAD’2002 : The 9th Annual East Coast Computer
Algebra Day, 2002.

[9] J.G. Dumas, T. Gautier, C. Pernet. FFLAS: Finite field linear algebra
subroutines. ISSAC’2002. 2002.

[10] J.G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E.
Kaltofen, D. Saunders, W. Turner, G. Villard. LinBox: A Generic Li-
brary for Exact Linear Algebra. ICMS’2002 : International Congress
of Mathematical Software. 2002.

[11] J.G. Dumas, G. Villard. Computing the rank of large sparse matrices
over finite fields. CASC’2002 Computer Algebra in Scientific Comput-
ing. 2002.

[12] J.G. Dumas, P. Giorgi, C. Pernet. FFPACK: finite field linear algebra
package. ISSAC’2004. 2004.

[13] J.G. Dumas, C. Pernet, Zhendong Wan. Efficient Computation of the
Characteristic Polynomial. ISSAC’2005, p 181-188. 2005.

[14] J.G. Dumas, A. Urbańska. An introspective algorithm for the inte-
ger determinant. In: Proceedings of Transgressive Computing 2006,
Granada, España. 2006.

[15] A. Duran, D. Saunders, Z.Wan. Hybrid Algorithms for Rank of Sparse
Matrices. In: Proceedings of the SIAM International Conference on
Applied Linear Algebra. 2003.

29

[16] W. Eberly, E. Kaltofen. On randomized Lanczos algorithms. IS-
SAC’1997. 1997

[17] W. Eberly, M. Giesbrecht, G. Villard. On computing the determinant
and smith form of an integer matrix. In Proc. 41st FOCS, 675-687,
2000.

[18] W. Eberly, M.Giesbrecht, P. Giorgi, A. Storjohann, G. Villard. Solving
Sparse Integer Linear Systems. ISSAC’2006. 2006.

[19] O.H. Ibarra, S. Moran, R.Hui. A generalization of the fast LUP ma-
trix decomposition algorithm and applications. Journal of Algorithms,
3(1):452̆01356, Mar.1982.

[20] E. Kaltofen, G. Villard. Computing the sign or the value of the deter-
minant of an integer matrix, a complexity survey. In Journal of Com-
putational and Applied Mathematics 164(2004), 133-146 2004.

[21] E. Kaltofen, G. Villard. On the complexity of computing determinants.
Computational Complexity, 31(3-4), pp 91–130, 2005.

[22] T. Mulders, A. Storjohann. Diophantine Linear System Solving.
ISAAC’1999, 181-188. 1999.

[23] D. Musser. Introspective Sorting and Selection Algorithms. Software—
Practice and Experience, 8(27), pp 983–993, 1997.

[24] V. Pan. Computing the determinant and the characteristic polynomial
of a matrix via solving linear systems of equations. Inform. Process.
Lett. 28(1988) 71-75. 1988.

[25] D. Saunders, Z. Wan. Smith Normal Form of Dense Integer Matrices,
Fast Algorithms into Practice. ISSAC 2004 2004.

[26] A.Storjohann. The shifted number system for fast linear algebra on
integer matrices. Journal of Complexity, 21(4), pp 609–650, 2005.

[27] A. Storjohann, P. Giorgi, Z. Olesh. Implementation of a Las Vegas inte-
ger Matrix Determinant Algorithm. ECCAD’05: East Coast Computer
Algebra Day, 2005.

[28] Z. Wan. Computing the Smith Forms of Integer Matrices and Solving
Related Problems. Ph.D. Thesis, U. of Delaware, USA, 2005.

[29] D. Wiedemann. Solving sparse linear equations over Finite Fields. In
IEEE Trans. Inf. Theory, pp. 54-62. 1986.

30

A Properties of matrices with almost uniformly
distributed entries

In this appendix we present some probabilistic properties of matrices with
entries almost uniformly distributed modulo pl, l ∈ Z. We consider the
case, when the entries are randomly and uniformly chosen from a set of S
contiguous integers S = {a, a + 1 . . . a + S − 1}, for any a. As the result,
the probability that an entry is equal to a given d modulo pl is bounded as
follows

1

S
⌊S

pl
⌋ ≤ P(x : x = d mod pl) ≤ 1

S
⌈S

pl
⌉. (4)

We set

β =
1

S
⌈S

pl
⌉, α =

1

S
⌊S

pl
⌋. (5)

This special case of non-uniformly distributed random variables was widely
considered in the thesis of Z. Wan (see [28]) for l = 1. In the following we
will first consider the rank modulo p of a matrix under certain conditions
(lemma A.1). Then we give the analogues of the theorems 5.9-5.15 of [28]
in the case l > 1 (lemmas A.2,A.3, A.4). This allows us to prove Theorem
3.2 on the expected number of invariant factors and Theorem 3.10, which
gives the expected size of over-approximation of µi in the case of perturbed
matrices.

Lemma A.1. Let A be a k × n, k ≤ n integer matrix with entries chosen
uniformly and randomly form S. The probability that rankp(A), the rank
modulo p of A, is j, 0 < j ≤ k is less than or equal to

P (rankp(A) = j) ≤
j−1
∏

i=0

(1 − α(n−i)) · β(n−j)(k−j) ·
(

1

1 − β

)max(k−j−1,0)

(1 + β . . . βk−j)

≤ β(n−j)(k−j)

(
1

1 − β

)k−j

, (6)

where α = 1
S ⌊S

p ⌋ and β = 1
S ⌊S

p ⌋.

Proof. The proof is inductive on k − j and j. For j = 0 and k leqn the fact
that rankp(A) = 0 means that all the entries of A are zero modulo p, that is

P(rankp(A) = 0) ≤ βnk,

the latter being less than βnk
(

1
1−β

)k
.

31

Now, denote by Ai the submatrix of A consisting of i first columns. For
k = j we have

P(rankp(Ak) = k) = P(rankp(Ak) = k | rankp(Ak−1 = k − 1)) · P(rankp(Ak−1 = k − 1)

= P(rankp(A1) = 1)

k∏

i=2

P(rankp(Ai) = i | rankp(Ai−1 = i − 1)).

To compute P(rankp(Ai) = i | rankp(Ai−1) = i − 1) we notice the fact
that rankp(Ai−1) = i − 1 means that we can choose an (i − 1) × (i − 1)
non-zero minor of Ai−1. This means that we can leave the choice of the
corresponding i − 1 entries of the ith column free and only have to ensure
that the remaining subvector of size n − i + 1 is not equal to some given
vector. This gives

P(rankp(Ai) = i | rankp(Ai−1 = i − 1) ≤ (1 − αn−i+1)

and in consequence

P(rankp(Ak) = k) ≤
k∏

i=1

(1 − αn−i+1).

Now, assume that for all (j, k) such that k− j < M the bound (6) holds.
We consider P(rankp(AK) = J), where K − J = M > 0. We can rewrite:

P(rankp(AK) = J) = P(rankp(AK) = J | rankp(AK−1) = J) · P(rankp(AK−1) = J)

+ P(rankp(AK) = J | rankp(AK−1) = J − 1) · P(rankp(AK−1) = J − 1).

To estimate P(rankp(AK) = J | rankp(AK−1) = J − 1), as in previous
reasoning, we only have to ensure that n − J + 1 entries of the last column
are not equal to a certain vector. On the contrary, for P(rankp(AK) =
J | rankp(AK−1) = J) we notice that we can leave the choice of J entries
corresponding to a non-zero minor free, but the remaining n−J entries have
to be determined modulo p. By induction, we have

P(rankp(AK) = J) ≤ (1 − αn−J+1) ·
J−2∏

i=0

(1 − α(n−i)) · β(n−J+1)(K−J)

(
1

1 − β

)K−J−1

+ βn−J
J−1∏

i=0

(1 − α(n−i)) · β(n−J)(K−J−1) ·
(

1

1 − β

)K−J−1

(1 + β . . . βk−j−1)

=
J−1∏

i=0

(1 − α(n−i)) · β(n−J)(K−J)

(
1

1 − β

)K−J−1

(1 + β . . . βK−J)

which finishes the proof.

32

Let us consider the example of n × 2 {0, 1} matrices. We will consider
α = β = 1

2 . We can construct 22n different matrices, 3 · (2n − 1) of which
fulfill the condition that the rank is equal to 1. The probability of choosing
at random a matrix of rank 1 is thus 3(2n−1)

22n . The bound given by Eq. (6)

is (1 −
(

1
2

)n
) ·
(

1
2

)n−1 · (1 + 1
2) which gives exactly the same value.

The following lemma gives analogues to lemmas 5.10, 5.11 in [28] in the
case of the ring Zpl. It proves that the vectors of elements from S can also
be treated as almost-uniformly distributed.

Lemma A.2. (i) Let t be a non-zero mod p vector of size n, d ∈ Zpl.
Then the probability that a random vector x ∈ Sn is chosen such that
t · x = d mod pl is

P
(

x : t · x = d mod pl
)

≤ 1

S
⌈S

pl
⌉

(ii) Let A ∈ Zm×n, a matrix of rank r such that the local Smith form of
A at p is trivial, b ∈ Zm

pl be given. Then the probability that a random

vector x ∈ Sm is chosen such that Ax = b mod pl is

P
(

x : Ax = b mod pl
)

≤
(

1

S
⌈S

pl
⌉
)r

.

Proof. For (i) the proof of 5.10 from [28] carry on. For (ii) we slightly
modify the proof of 5.11 from [28]. Since A has a trival Smith form modulo
p there exist two matrices L,R, det(L),det(R) 6= 0 mod p, such that A =

L

[
Ir 0
0 0

] [
R′

R′′

]

, where R′ = [Rij] mod p is a r × m matrix. We may

therefore transform

P(x : Ax = b) = P(x : R′x = [L−1b]1..r)

Since the determinant of R is non-zero modulo p there exist a r × r minor
R1 which is non-zero modulo p. This means that we can find elements
r1i1 . . . r1ir of R1, where ik are pairwise distinct, such that rkik are non-zero
modulo p. Let d = L−1b. The probability can be further rewritten:

P(x : R′x = [d]1..r) =
∑

j1∈Z
pl

· · ·
∑

jr∈Z
pl

P

R11x1 + · · · + ˆR1i1xi1 + . . . R1nxn = j1

R21x1 + · · · + ˆR2i2xi2 + . . . R2nxn = j2

. . .

Rr1x1 + · · · + ˆRrirxir + . . . Rrnxn = jr

P

xi1 = (d1 − j1)R
−1
1i1

xi2 = (d2 − j2)R
−1
2i2

. . .

xir = (dr − jr)R
−1
rir

≤
(

1

S
⌈S

pl
⌉
)r

(7)

33

We use ˆRkikxik to denote that the element with index k is omitted in the
sum.

The following lemmas show that matrices of elements of S can be treated
as almost uniformly distributed.

Lemma A.3. Let L,R ∈ Zn×n be matrices such that |det (L) | = |det (R) | =
1. Let I, J be any disjoint subsets of {1 . . . n}2 (sets of index pairs). Let
dij , (i, j) ∈ I (resp. Dst, (s, t) ∈ J) be any values (resp. subsets) from
Zpl. We consider the probability of choosing a random matrix X such that
(LXR)ij = dij for (i, j) ∈ I under the condition that (LXR)st ∈ Dst for
(s, t) ∈ J . We have

P
(

(LXR)ij = dij | (LXR)st ∈ Dst

)

≤
(

1

S
⌈S

pl
⌉
)|I|

.

Proof.

P
(

(LXR)ij = dij | (LXR)st ∈ Dst

)

=
P
(

(LXR)ij = dij ∧ (LXR)st ∈ Dst

)

P ((LXR)st ∈ Dst)

(8)

Let D′ denote a set of all possible matrices [alk] such that alk ∈ Dlk if
(l, k) ∈ J and alk ∈ S otherwise. Let D denote a set of matrices from D′ for
which additionally alk = dlk if (l, k) ∈ I. Then Eq. (8) can be transformed
to

P
(
X ∈ L−1DR−1

)

P (X ∈ L−1D′R−1)

Notice, that sets D and L−1DR−1 (resp. D′ and L−1D′R−1) have the same
number of elements. To compute the probability it suffices to count the
number of elements in D and D′. The proportion is determined by the

choice of elements from I and is therefore less than or equal to
(

1
S ⌈ S

pl ⌉
)|I|

.

The methods used to prove Lemmas A.2 and A.3 can applied to prove
the following lemma.

Lemma A.4. Let A ∈ Zm×n be a matrix such that the Smith form of A is
trivial and rank(A) = m ≤ n. Let I, S be any disjoint subsets of {1 . . . m}2

(sets of index pairs). Let bij , (i, j) ∈ I (Bst, (s, t) ∈ S) be any values (resp.

34

subsets) from Zpl. We consider the probability of choosing a random matrix
X such that such that (AX)ij = bij for (i, j) ∈ I under the condition that
(LXR)st ∈ Bst for (s, t) ∈ S. We have

P
(

(AX)ij = bij | (AX)st ∈ Bst

)

≤
(

1

S
⌈S

pl
⌉
)|I|

. (9)

Proof. Let matrices L,R = R′ be as in the proof of A.2. As in the proof of
A.3, we construct the sets of matrices D, D′. We have

P
(

(AX)ij = bij | (AX)st ∈ Bst

)

=
P
(
RX ∈ L−1D

)

P (RX ∈ L−1D′)
=

∏

i=1...m RXi ∈ L−1Di
∏

i=1...m RXi ∈ L−1D′
i
,

where Xi denote the ith column of X and Di(D′
i), the set of all possible ith

columns for matrices from D(D′). Since (7) holds for every vector L−1d of
L−1Di(resp.L−1D′

i), again, we can link the the probability to the number
of elements in I and conclude that (9) holds.

We conclude with the following lemma.

Lemma A.5. Let V be an k × n matrix, k ≤ n, such that the Smith form
of V is trival and V has a full rank. Let M be an n × k matrix with en-
tries chosen randomly and uniformly from set S, the probability that pl < S
divides the determinant det(V M) is at most 3

pl .

Proof. To check whether ordp (det (M)) ≥ l we will consider a process of di-
agonalization for M(0) = V M mod pl as described in Algorithm LRE of [7].
It consists of diagonalization and reduction steps. At the r-th diagonaliza-
tion step, if an invertible entry is found, it is placed in the (r, r) pivot position
and the rth column is zeroed. If no invertible entry is found, we proceed
with a reduction step i.e. we consider the remaining (n − r + 1, n − r + 1)
submatrix divided by p. The problem now reduces to determining whether
ordp of an (n − r + 1, n − r + 1) matrix is greater than l − n + r − 1.

We can consider matrix M(0) = M0 + pM1 + p2M2 · · · + plMl−1, where
matrix Mk ∈ Zn×n

p , k = 0 . . . l − 2 and Ml−1 ∈ Zn×n. The probability that

an entry of Mk is equal to a certain d modulo p is less that or equal 1
Nk

⌈Nk

p ⌉,
where Nk is equal to ⌈ S

pk ⌉ by Lemma A.4.

In the process of diagonalization we can find matrices L0, R0, det (L0) =

det (R0) = 1 such that L0M0R0 = diag

(

1 . . . 1
︸ ︷︷ ︸

r

, 0 . . . 0

)

and L0MR0 =

35

diag

(

1 . . . 1
︸ ︷︷ ︸

r

, pL0M1R0 + . . .

)

. Then after the reduction step we set M0 (1) =

[(L0M1R0)ij]i=r+1...n,j=r+1...n and Mk (1) equal to [(L0Mk+1R0)ij]i=r+1...n,j=r+1...n,
M (1) = M0 (1) + pM1 (1) + . . . and we repeat the diagonalization phase.
By construction, the choice of L0, . . . Lk−1, R0, . . . Rk−1 means that certain
entries of M are fixed and places us in the situation of Lemmas A.3,A.4.
Thanks to that we can consider the distribution of entries of M(k) as non-
uniform i.e. P (M(k)ij = dij mod pα | L0 . . . Lk−1, R0 . . . Rk−1) ≤ 1

Nk
⌈Nk

pα ⌉.
Another way to see this is to think of the diagonalization as the mod-

ification to a22 in the form of a22 − a21
a11

a12 with a11 and a12 fixed by the
previous step. Then one has one degree of freedom, say for a21 and then a22

has to be fixed.
We need only to consider l − 2k reductions steps as each reduction is

performed on a matrix of order at least 2 and divides the determinant by at
least p2. Since k is less than ⌈l/2⌉ − 1 and l ≤ logp (S), we have Nk ≥ S

pk ≥√
S and since we only consider pα < Nk we have

βα (k) =
1

Nk
⌈Nk

pα
⌉ ≤ Nk + pα − 1

pαNk
≤ 2pα

pα (pα + 1)
=

2

pα + 1

throughout the process. We therefore now set βα = 2
pα+1 and use it as a

bound for βα (k), k = 1, 2 . . . in our calculations.
The proof is inductive on n, the dimension of the matrix M (k) and

l, the current exponent. We fix the diagonalization/reduction matrices
L0 . . . Lk−1, R0 . . . Lk−1 and consider the conditional probability Pk−1 =
P (· | L0 . . . Lk−1, R0 . . . Rk−1).

First, for l = 1, [28, Thm 5.13] gives

Pk−1 (p ∤ det (M(k))) ≤
n∏

i=1

(
1 − βi

1

)
.

This transforms to

Pk−1 (p | det (M (k))) ≤
n∑

i=1

βi
1 ≤ β1

1 − β1
. (10)

Thus, the probability can be bounded by min
(

1, 2
p−1

)

and therefore by 3
p .

For n > 1 we will sum over all possible choices of Lk and Rk. We
will divide the sum on the cases when applying Lk and Rk leads to the
diagonalization of at least r entries. We call such an event Er.

36

Then for n = 2, l = 2:

Pk−1
(
p2 | det (M (k))

)
≤

∑

Lk,Rk∈E1

Pk−1
(
p2| (LkM (k)Rk)22 | Lk, Rk

)
Pk−1 (Lk, Rk)

+ Pk−1
(

p|M (k)ij , i, j = 1, 2
)

≤ β2 + β4
1 ≤ 2

p2 + 1
+

(
2

p + 1

)4

≤ 3

p2

Now we suppose inductively that Pk−1
(
pi | det (M (k))

)
≤ 3

pi for all
i < l. Then for n = 2, 2 < l < n the induction gives

Pk−1
(

pl | det (M (k))
)

≤
∑

Lk,Rk∈E1

Pk−1
(

pl| (LkM (k)Rk)22 | Lk, Rk

)

Pk−1 (Lk, Rk)

+ Pk−1
(

p|M (k)ij , i, j = 1, 2
)

Pk−1
(

pl−2|det (M (k + 1))
)

≤ βl (k) + β1 (k)4
3

pl−2
.

The latter is less than 3
pl when

β1 (k)4 3p2 ≤ 1. (11)

With β1 (k) ≤ 2
p+1 this means that 48

(1+1/p)2(p+1)2
= 48

(p+2+1/p)2
≤ 1 which is

fulfilled for p > 3. For primes p = 2, 3 we have to use a sharper bound for
βl (k). Since pl < Nk and l > 2 we have

β1 (k) ≤ pl + 1 + p − 1

(pl + 1) p
≤ pl−1 + 1

pl + 1
<

p + 1

p2 + 1
. (12)

This allows us to prove the inequality (11) for p = 3 since
(

2
5

)4
27 < 0.7.

For p = 2 and l > 3 also
(

9
17

)4
12 < 0.95 . For the remaining case p = 2,

l = 3 we can bound Pk−1 (p | det (M (k + 1))) by 1 instead of 3
2 and then

one can prove that β3 (k) + β1 (k)4 ≤ 2
9 +

(
5
9

)4
< 0.32 ≤ 3

8 .
Now we will consider n > 2. Again we can sum over all possible diago-

nalization and reduction steps combinations and the resulting bound for the

37

probability is

Pk−1
(

pl | det (M (k))
)

≤ Pk−1
(

p|M (k)ij ∀i,j≤n

)

+

n−l∑

r=1

∑

Lk,Rk∈Er

Pk−1
(

p| (LkM (k) Rk)ij ∀i,j≤n−r | Lk, Rk

)

Pk−1 (Lk, Rk)

+
n−2∑

r=n−l+1

∑

Lk,Rk∈Er

Pk−1
(

p| (LkM (k) Rk)ij ∀i,j≤n−r | Lk, Rk

)

·

Pk−1 (Lk, Rk)Pk
(

pl−n+r|det (M(k + 1))
)

+
∑

Lk ,Rk∈En−1

Pk−1
(

pl| (LkM (k) Rk)nn | Lk, Rk

)

Pk−1 (Lk, Rk) ≤
n∑

i=l

β1 (k)i
2

+

n−2∑

r=n−l+1

∑

Lk,Rk∈Er

β1 (k)(n−r)2 Pk−1 (Lk, Rk)Pk
(

pl−n+r|det (M (k + 1))
)

+ βl (k)

(13)

for l ≤ n and similarly for l > n

Pk−1
(

pl | det (M (k))
)

≤ Pk−1
(

p|M (k)ij ∀i,j≤n

)

Pk−1
(

pl−n|det (M(k + 1))
)

+

n−2∑

r=1

∑

Lk,Rk∈Er

Pk−1
(

p| (LkM (k)Rk)ij ∀i,j≤n−r | Lk, Rk

)

·

Pk−1 (Lk, Rk)Pk
(

pl−n+r|det (M(k + 1))
)

+
∑

Lk ,Rk∈En−1

Pk−1
(

pl| (LkM (k) Rk)nn | Lk, Rk

)

Pk−1 (Lk, Rk)

≤ β1 (k)n
2 Pk−1

(

pl−n|det (M (k + 1))
)

+ βl (k)

+

n−2∑

r=1

∑

Lk,Rk∈Er

β1 (k)(n−r)2 Pk−1 (Lk, Rk)Pk−1
(

pl−n+r|det (M (k + 1)) | Lk, Rk

)

.

(14)

Again, we can use the induction to get the bound Pk
(
pl−i | det (M(k + 1))

)
≤

3
pl−i . Then, we can then bound both sums by

Pk−1
(

pl | det (M (k))
)

≤
∞∑

i=2

β1 (k)i2 3

pl−i
+βl (k) ≤ 3β1 (k)4

pl−2

1
(

1 − β1 (k)5 p
)+βl (k) .

(15)

38

To prove the inequality Pk−1
(
pl | det (M (k))

)
≤ 3

pl , we have to consider

several cases. For p > 3 we use the bound β1 and βl for β1 (k) and βl (k)
respectively. Then we have

3 · 24p2 (p + 1)

pl
(

(p + 1)5 − p25
) +

2

pl + 1
<

2

pl
+

1

pl

48p2 (p + 1)

(p + 1)5 − (p + 1) 24
<

2

pl
+

1

pl

48p2

(p + 1)4 − 24

<
2

pl
+

1

pl

48p2

25p2 + 4 · 5p2 + 6 · p2 + 4 · 5 + 1 − 16
<

2

pl
+

1

pl

48p2

51p2
<

3

pl
.

For p = 3 it can be explicitly checked that Pk−1
(
pl | det (M)

)
< 3

pl us-

ing the bound p+1
p2+1

for β1 (k) (notice that Nk > pl). In this case we get

1
3l

3(2
5)

4
32

(

1−(3 2
5)

5
) + 2

3l < 1
3l 2.75.

For p = 2 we have to consider 22, 23, 24 and 2l for l > 4 separately and
use the sharper bound from Eq. (12). Let us rewrite (13) and (14) in this
cases.

• l = 2:

Pk−1
(
22 | det (M (k))

)
≤

n∑

i=2

β1 (k)i
2

+β2 (k) ≤ β1 (k)4
1

1 − β1 (k)5
+β2 (k) .

As β1 (k) ≤ 2+1
4+1 we have 0.65 < 0.75.

• l = 3:

Pk−1
(
23 | det (M (k))

)
≤

n∑

i=3

β1 (k)i
2

+ β1 (k)4 · 1 + β3 (k)

≤ β1 (k)9
1

1 − β1 (k)7
+ β1(k)4 + β3(k).

As β1 (k) ≤ 4+1
8+1 we have 0.33 < 0.375.

• l = 4:

Pk−1
(
24 | det (M(k))

)
≤

n∑

i=4

β1(k)i
2
+ β1(k)9 · 1 + β1(k)4Pk

(
22 | det (M(k + 1))

)
+ β4(k)

≤ β1(k)16
1

1 − β1(k)9
+ β1(k)9 + β1(k)4

3

4
+ β4(k).

As β1 (k) ≤ 8+1
16+1 we have 0.18 < 0.1875.

39

• l > 4:

We use inequality (15) with β1 (k) bounded by p4+1
p5+1

. We get Pk−1
(
2l | det (M (k))

)

is less than 1
2l

(
3(24+1)

4
22

(25+1)4((25+1)5)−2(24+1)
+ 2

)

< 2.92 1
2l < 3

2l .

We have thus proven that Pk−1
(
pl|det(M(k))

)
≤ 3

pl for every l > 0 and

every size n of M(k). Thus, P(pl|det(V M)) is also less than or equal 3
pl .

40

