Computable Convergence Rates for Subgeometrically Ergodic Markov Chains - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2007

Computable Convergence Rates for Subgeometrically Ergodic Markov Chains

Résumé

In this paper, we give quantitative bounds on the $f$-total variation distance from convergence of an Harris recurrent Markov chain on an arbitrary under drift and minorisation conditions implying ergodicity at a sub-geometric rate. These bounds are then specialized to the stochastically monotone case, covering the case where there is no minimal reachable element. The results are illustrated on two examples from queueing theory and Markov Chain Monte Carlo.
Fichier principal
Vignette du fichier
DoucMoulinesSoulier.pdf (307.4 Ko) Télécharger le fichier

Dates et versions

hal-00013769 , version 1 (10-11-2005)

Identifiants

Citer

Randal Douc, Éric Moulines, Philippe Soulier. Computable Convergence Rates for Subgeometrically Ergodic Markov Chains. Bernoulli, 2007, 13 (3), ⟨10.3150/07-BEJ5162⟩. ⟨hal-00013769⟩
199 Consultations
90 Téléchargements

Altmetric

Partager

More