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COMPUTABLE CONVERGENCE RATES FOR
SUBGEOMETRICALLY ERGODIC MARKOV CHAINS

RANDAL DOUC*, ERIC MOULINES, AND PHILIPPE SOULIER

ABSTRACT. In this paper, we give quantitative bounds on the f-total variation
distance from convergence of an Harris recurrent Markov chain on an arbitrary
under drift and minorisation conditions implying ergodicity at a sub-geometric
rate. These bounds are then specialized to the stochastically monotone case,
covering the case where there is no minimal reachable element. The results are
illustrated on two examples from queueing theory and Markov Chain Monte
Carlo.
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1. INTRODUCTION

Let P be a Markov transition kernel on a state space X equipped with a count-
ably generated o-field X. For a control function f : X — [1,00), the f-total

variation or f-norm of a signed measure p on X is defined as

[l 7 == sup |p(g)| -
l91<

When f = 1, the f-norm is the total variation norm, which is denoted ||u||Tv. We
assume that P is aperiodic positive Harris recurrent with stationary distribution
m. Our goal is to obtain quantitative bounds on convergence rates, i.e. rate of

the form
r(n)||P"(z,-) —7|f < g(x), foralazeX (1.1)

where f is a control function f : X — [1,00), {r(n)},>0 is a non-decreasing

sequence, and g : X — [0, 00| is a function which can be computed explicitly. As

emphasized in ([Roberfs and Rosenthal, P004], section 3.5), quantitative bounds

have a substantial history in Markov chain theory. Applications are numerous
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including convergence analysis of Markov Chain Monte Carlo (MCMC) methods,
transient analysis of queueing systems or storage models, etc. With few exception
however, these quantitative bounds were derived under conditions which imply

geometric convergence, i.e. r(n) = " n > 1. (see for instance

Tweedid ([994), Rosenthal ([997), Roberts and Tweedid ([[999), Roberts and

Rosenthal] (E004), and Baxendalq (E009)).

In this paper, we study conditions under which ([[Z]]) hold for sequences in

the set A of subgeometric rate functions from Nummelin and Tuominen] ([[983),

defined as the family of sequences {r(n)},>o such that (n) is non decreasing and
logr(n)/n | 0 as n — oo. Without loss of generality, we assume that r(0) = 1
whenever € A. These rates of convergence have been only scarcely considered
in the literature. Let us briefly summarize the results available for convergence at

subgeometric rate for general state-space chain. To our best knowledge, the first

result for subgeometric sequence has been obtained by Nummelin and Tuominen|
(M983), who derive sufficient conditions for || P™ —7||pv to be of order o(r~'(n)).

The basic condition involved in this work is the ergodicity of order r (or r-

ergodicity), defined as

sup E,
zeB

z_: r(k;)] <. (1.2)

k=0

where 75 & inf{n > 1, X, € B} (with the convention that inf() = co) is the

return time to some accessible some small set B (i.e. m(B) > 0). These results

were later extended by [Tuominen and Tweedid ([994) to f-norm for general

control functions f : X — [1,00) under (f,r)-ergodicity, which states that

sup E,
zeB

z_: r(k) f(Xk)] < 00 (1.3)

k=0
for some accessible small set B. These contributions do not provide computable
expressions for the bounds in ([]).

A direct route to quantitative bounds for subgeometric sequences has been

opened by Neretennikoy (1997, [999), based on coupling techniques (see

sky_and Veretennikoy ([993) and Rosentha] ([999) for the coupling construc-

tion of Harris recurrent Markov chains). This method consists in relating the

bounds ([T])) to a moment of the coupling time through Lindvall’s inequality
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[Lindval] (I979, [997). [Veretennikoy] (997, [999) focus on a particular class

of Markov chains, the so-called functional autoregressive processes, defined as
Xoi1 = 9(X,) + Wi, where g : R? — R? is a Borel function and (W,,),>0

is an i.i.d. sequence, and provides expressions of the bounds in ([.I)) with the

total variation distance (f = 1) and polynomial rate functions r(n) = n® n > 1.
These results have later been extended, using similar techniques, to truly sub-

geometric sequence, i.e. {r(n)},>0 € A satisfying lim,, ., 7(n)n™" = oo for any

k, in [KIokov and Veretennikoy (P004)), for a more general class of functional

autoregressive process.
~ Fort and Moulines (B003H) derived quantitative bounds of the form ([C]) for

possibly unbounded control functions and polynomial rate functions, also using

the coupling method. The bound for the modulated moment of the coupling time

is obtained from a particular drift condition introduced by [Fort and Moulineq
(B00Q) later extended by Parner and Robertd (B00T]). This method is based on a
recursive computation of the polynomial moment of the coupling time (see ([Forf

pnd Moulined, 0034, proposition 7)) which is related to the moments of the

hitting time of a bivariate chain to a set where coupling might occur. This proof

is tailored to the polynomial case and cannot be easily adapted to the general
subgeometric case (see (ROOT)) for comments).

The objective of this paper is to generalize the results mentioned above in two
directions. We consider Markov chains over general state space and we study
general subgeometrical rates of convergence instead of polynomial rates
Moulined (PO03H). We establish a family of convergence bound (with a trade-
off between the rate and the norm) extending to the subgeometrical case the
computable bounds obtained in the geometrical case by Rosenthal ([[993) and
later refined by Roberts and Tweedid ([999) and Douc et al] (R004H) (see (Robertq
bnd Rosenthal, P004, Theorem 12) and the references therein). The method,

based on coupling associated, provides a short and nearly self-contained proof

of the results presented in Nummelin and Tuominer] ([983) and [Tuominen and
[Tweedid ([999): this allows for intuitive understanding of these results, while also

avoiding various analytic technicalities of the previous proofs of these theorems.

The paper is organized as follows. In section J}, we present our assumptions and

state our main results. In section R.l|, we specialize our result to stochastically
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monotone Markov chains and derive bounds which extends results reported earlier
by Bcott_and Tweedid ([996) and Roberts and Tweedid (R000). Examples from

queueing theory and MCMC are discussed in section J to support our findings

and illustrate the numerical computations of the bounds.

2. STATEMENTS OF THE RESULTS

The proof is based on the coupling construction (briefly recalled in section fl).

It is assumed that the chain admits a small set:

(A1) There exist a set C' € X, a constant € > 0 and a probability measure v such
that, for all x € C, P(z,-) > ev(-).

For simplicity, only one-step minorisation is considered in this paper. Adaptations

to m-step minorisation can be carried out as in Rosentha] ([993) (see also
(R00T)) and [Fort_and Moulined (R003H)).
Let P be a Markov transition kernel on X x X such that, for all A € X,

p(l’, 1’,, A X X) = P({L’, A)]]-(CXC)C ([L’, ZL’I) + Q(ZL’, A)ﬂcxc(l’, :L'/) (2.1)
Pz, ', X x A) = P(2', A)Toxcye (z,2') + Q(2, A)loxe(z, o) (2.2)

where A€ denotes the complementary of the subset A and @ is the so-called
residual kernel defined, for x € C' and A € X by

Q. A) = (1—e)(P(z,A) —ev(A)) 0<e<l (2.3)
v(A) €=

One may for example set

P(z,z'; Ax A) =
P(z, A)P(z', AL cxcye(z,2") + Q(z, A)Q(2', A)Loxe(z,2') , (2.4)

but, as seen below, this choice is not always the most suitable. For (z,z') € Xx X
denote by Ip’x,x/ and Ex,x/ the law and the expectation of a Markov chain with
initial distribution d, ® d,, and transition kernel P.

Our second condition is a bound on the moment of the hitting time of the
bivariate chain to C' x C' under the probability P, ... Let {r(n)} € A be a
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subgeometric sequence and set: R(n) o "o 7(k). Denote by ooxe = inf{n >
0, (X,, X!) € C x C} the first hitting time of C' x C' and let
aCxC
Ulw,a') = By | 7(k) (2.5)
k=0

Let v : X x X — [0, 00) be a measurable function and set

> U(Xk,X,;)] (2.6)

k=0
(A2) For any (z,2") € X x X, U(z,2’) < co and

V(r,2') = E, .

by & sup PU(z,2') = sup [E,.
(z,2")eCxC (z,2")eCxC

(A3) For any (z,2') € X x X, V(x,2') < oo and

TCxC

by = sup PV(r,a)= sup E,,.
(z,2")eCxC (z,2")eCxC

U(Xk,X,;)] <co.  (28)

k=1

We will establish that R is the maximal rate of convergence (that can be
deduced from assumptions [ATJH[A3]) and that this rate is associated to con-
vergence in total variation norm. On the other hand, we will show that the
difference P(z,-) — P(2/,-) remains bounded in f-norm for any function f sat-
isfying f(z) + f(2') < V(x,2’) for any (z,2") € X x X. Using an interpolation
technique, we will derive rate of convergence 1 < s < r associated to some g-
norm, 0 < g < f. To construct such interpolation, we consider pair of positive

functions («, 3) satisfying, for some 0 < p <1,
a(w)f(v) < pu+ (1—ppv, forall (u,v) € RY x RT . (2.9)

Functions satisfying this condition can be obtained from Young’s inequality. Let
1) be a real valued, continuous, strictly increasing function on R such that
¥ (0) = 0; then for any (a,b) > 0,

ab < P(a) + F(b) ,where P(a) & /0 alp(x)dx and F(b) < /0 Y (x)dw

where 1~! is the inverse function of 1. If we set a(u) = P~Ypu) and B(v) =
FH(1 — p)v), then the pair (3, «) satisfies (R.9). Taking ¢ (x) = 2P~! for some
p > 1 gives the special case {(ppu)'/?, (p(1 — p)u/(p —1))P=1/r}.
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Theorem 2.1. Assume [(AI), [[AZ), and[[A3). Define

My ¥ sup { (bUr(k:)l - R(k + 1)) } and My € bv1 —-, (2.10)
€
+

keN €

where (x)4 o max(x,0). Then, for any (z,z') € X x X,

n n(../ U(ZL’,I’/) +MU
[P (z,-) — P"(2",-)||rv < OESTE (2.11)
[P (@) = P"(a', )|y < V(z,2") + My, (2.12)

for any non-negative function f satisfying, for any (x,z') € Xx X, f(x)+ f(z') <

V(z,2") + My. Let (o, ) be two positive functions satisfying (9) for some

0<p<1. Then, for any (z,2') e Xx X andn > 1, :

Ulz,z') + My) + (1 — p) (V(z,2") + My)
ao{R(n)+ My}

for any non-negative function g satisfying, for any (z,x') € Xx X, g(x)+g(z') <

Bo{V(x,a') + My}

1P7(a,) — Pt )l < 24 (2.13)

The proof is postponed to section f.

Remark 1. Because the sequence {r(k)} is subgeometric, limy_o 7(k)/R(k+1) =
0. Therefore, the sequence {byr(k)(1 —€)/e — R(k)} has only finitely many non-

negative terms, which implies that My < oco.

Remark 2. When assumption [A2], then is automatically satisfied for some

function v. Note that

B oCxC 5 oCcxC
Em@/ Z T(l{i) = Ex,gc’ Z T(UCXC — ]{3)]
k=0 k=0

On the other hand, for all (z,2") € X x X,

Eg [T(UCXC - k)1{00x02k}}
= Ezp,x’ [EXhX;Q [r(oexe)] 1{00x02k}} = Em,m’ [UT(ka XI/f)IL{UCchk}} )

where v, (z, 2) o B, [r(ccxc)]. This relation implies that

ICxC ICxC
Ey o r(k)| = Epu Z vr(Xk,XIQ)] , forall (z,2") e X x X.
k=0 k=0
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However, in particular when using drift functions, it is sometimes easier to apply

theorem P.1] with function a function v which does not coincide with v,.

To check assumptions [A2) and [[A3] it is often useful to use a drift conditions.
Drift conditions implying convergence at polynomial rates have been recently pro-
posed in Jarner and Robertd (R001]). These conditions have later been extended
to general subgeometrical rates by [Douc et al] (004g). Define by C the set of

functions

c¥ {gb :[1,00) — R" | ¢ is concave, differentiable and

6(1) > 0, lim ¢(v) = oo, lim ¢/(v) = o} . (2.14)

V— 00

For ¢ € C, define the function Hy : [1,00) — [0,00) as Hy(v) o N %. Since
¢ is non decreasing, Hy is a non decreasing concave differentiable function on
[1,00) and lim, .o, Hg(v) = oco. The inverse H(;l : [0,00) — [1,00) is also an
increasing and differentiable function, with derivative (H(;l)’ =¢o H(;l. Note
that (log{¢ o del})’ = ¢ o H(;l. Since Hy is increasing and ¢’ is decreasing,

oo H(;l is log-concave, which implies that the sequence

ro(n) € ¢o Hy'(n)/¢o H;Y(0), (2.15)

belongs to the set of subgeometric sequences A. Consider the following assump-

tion

(A4) There exists a function W : X x X — [1, 00), a function ¢ € C and a constant
b such that PW(z,2') < W(x,2') — ¢ o W(x,2') for (z,2') ¢ C x C and
SUD (1) eCxC PW (z,2') < oo.

It is shown in Douc et al] (P004d) that under [A4], and are satisfied

with the rate sequence r, and the control function v = ¢ o W. In addition, it is

possible to deduce explicit bounds for the constants By, by, By and by from the

constants appearing in the drift condition.
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Proposition 2.2. Assume [[A{) Then, and hold with v = ¢ o W,

r =14 and

ro(1)

U(z,2') <1+ o) {W(z,2") =1} Liexeye(z,2') | (2.16)
V(z,z') <sup po W + W(z,2" ) Licxeye(z, 2') , (2.17)
CxC
rs(1) { : }
by <1+ —=4qsup PW -1, , 2.18
VST Lexe 219
by < sup ¢po W + sup PW . (2.19)
CxC CxC

The proof is in section []. Proposition P.3 is only partially satisfactory because
Assumption is formulated on the bivariate kernel P. It is in general easier
to establish directly the drift condition on the kernel P and to deduce from this

condition a drift condition for an appropriately defined kernel P (see (Rob

and Rosenthal, P004, Proposition 11) for a similar construction for geometrically

ergodic Markov chain). Consider the following assumption:

(A5) There exists a function Wy : X x X — [1,00), a function ¢y € C and a
constant by such that PWy < Wy — ¢g o Wy + bylc.

Theorem 2.3. Suppose that [[AT) and[[A5] are satisfied. Let d, & inf,gc Wo(z).
Then, if ¢o(dy) > by, the kernel P defined in (B4) satisfies the bivariate drift
condition with

Wiz, z'") = Wy(z) + Wy(z") — 1 (2.20)
(]5 = )\(250 , fOT any A ,0 < A<1— b0/¢0(d0> (221)
sup PW < 2(1 —¢)™* {sup PWy — EV(WO)} —-1. (2.22)
CxC c

where the kernel Q is defined in (2.3).
The proof is postponed to the appendix.

Remark 3. Since the function ¢q is non-decreasing and lim,, ., ¢o(v) = 00, one
may always find d such that the condition ¢g(1) + ¢o(d) > bo(1 — a)™' + 2 is
fulfilled. The assumptions of the theorem above are satisfied provided that the
associated level set {Vy < d} is small. This will happen of course if all the level

sets are l-small, which may appear to be a rather strong requirement. More
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realistic conditions may be obtained by using small sets associated to the iterate
P™ of the kernel (see e.g. Rosenthal ([993), [For{ (R00T]) and [Fort and Moulineq
(BOO3H)).

2.1. Stochastically ordered chains. In this section, we show how to define the
kernel P and obtain a drift condition for stochastically ordered Markov chain.
Let X be a totally ordered set, and denote < the order relation. For a € X,
denote (—o00,a] = {zr € X: x <a} and [a,+00) = {z € X: a < z}. A transition
kernel P on X is called stochastically monotone if for all a € X, P(-, (—00,al)
is non increasing. Stochastic monotonicity has been seen to be crucial in the

analysis of queuing network, Markov Monte-Carlo methods, storage models, etc.

Stochastically ordered Markov chains have been considered in [Lund and Tweedid
(M994), [Cund et al] ([99q), Bcott and Tweediq ([99¢) and [Roberts and Tweedid
(B00Q). In the first two papers, it is assumed that there exists an atom at the
bottom of the state space. [Lund et al] (I99d) cover only geometric convergence;
subgeometric rate of convergence are considered in Scott_and Tweedid ([[99G).
Roberts and Tweedid (B000) covers the case where the bottom of the space is a

small set but restrict their attentions to conditions implying geometric rate of

convergence.
For a general stochastically monotone Markov kernel P, it is always possible
to define the bivariate kernel P (see (P-])) so that the two components {X,, }.>0
and { X },>o are pathwise ordered, i.e. their initial order is preserved at all times.
The construction goes as follows. For z € X, u € [0,1] and K a transition
kernel on X denote by G (x, u) the quantile function associated to the probability

measure K (zx,-)
Gr(z,u) =inf{y € X, K(x, (—o0,y]) > u} . (2.23)

Assume that holds. For (z,2') € XxX and A € X® X, define the transition
kernel P by

1
Loy o P, as A) = /0 1a(Gon(a, ), Gl ) du

1
+ ool o) / 14(G5 (2, w), G, u)) d
0
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where @ is the residual kernel defined in (£.3). It is easily seen that, by construc-
tion, the set {(z,2') € X x X : x < 2/} is absorbing for the kernel P.

In the sequel, we assume that holds for some C & (—o0, xg] (i.e. that
there is a small set at the bottom of the space). Let vy : X — [1,00) be a

measurable function and define:

Up(z) & E, Zr(k;)] and Vy(z) = E, ZUO(Xk)] : (2.24)

Consider the following assumptions:

(B2) For any = € X, Up(z) < oo and sup. QUy = by, < o0,
(B3) For any = € X, Vy(z) < oo and supp QVh = by, < oo,

Theorem 2.4. Assume that [[ATJ{(B2J{(B3) holds for some set C o (—00, xg).
Then, [(A2) and [[A3] hold with U(z,2") = Uy(z V '), V(z,2") = Vo(z V '),

v(z, ") =vo(xz VvV a'), by = by, and by = by,.

The proof is obvious and omitted for brevity. As mentioned above, drift con-
ditions often provide an easy path to prove conditions such as and [B3].

Consider the following assumption:

(B4) There exists a a nonnegative function Wy : X — [1,00), a function ¢ € C
such that for x ¢ C', PW, < Wy — ¢ o Wy and sup. PWy < 00.

Using, as above Douc et al] (R0044d), it may be shown that this assumption implies
[B2] and [B3] and allows to compute explicitly the constants.

Theorem 2.5. Assume [[AT) and [B]). Then [[B2) and [B3) hold with vy =
poWy, r=ry, and

re(1) B (2

Vo(z) < sgp ¢oWy+ Wo(x)lee(x) , (2.26)

by, <1+ ;¢(—(11)) ((1 —e)! {sgp PW, — el/(Wo)} - 1) (2.27)

by, <suppo Wy + (1 —e)™* {sup PWy — eu(Wo)} . (2.28)
c c

The proof is entirely similar to Proposition P.J and is omitted.
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3. APPLICATIONS

3.1. the embedded M/G/1 queue. In a M/G/1 queue, customers arrive into
a service operation according to a Poisson process with parameter A. Customers
bring jobs requiring a service times which are independent of each others and of
the inter-arrival time with common distribution B concentrated on (0,00) (we
assume that the service time distribution has no probability mass at 0). Consider
the random variable X,, which counts customers immediately after each service

time ends. {X,,},>0 is a Markov chain on integers with transition matrix

Gy ap as as
Gy a1 G2 as
P = 0 apg ap as ... (31)

0 0 ag aq

where for each j > 0, a; & I {e7M(A) /41 dB(t) (see (Meyn and Tweedid,

1993, proposition 3.3.2)). It is known that P is irreducible, aperiodic, and positive

recurrent if p © Ay = > =i ja; < 1, where for u > 0, m, o [t dB(t).

Applying the results derived above, we will compute explicit bounds (depending
on A\, z and the moments of the service time distribution) for the convergence
bound || P™(x,-) — 7| for some appropriately defined function f.

Because the chain is irreducible and positive recurrent, 7y < oo P,-a.s. for
x € N. By construction, for all x = 1,2,..., 7.1 < 79, P,-a.s., which implies
that E,[r0] = E.[7,_1] + E,_1[70] and, for any s € C such that |s| < 1, E,[s™] =
E.[s™ 'E;_1[s™], where 7, is the first return time of the state z — 1. For all
r =1,2,..., we have P,{m,_y € -} = Pi{7p € -} which shows that E,[ry] =

Ky [10] and E, [s™] = €”(s), where e(s) o E,[s™]. This relation implies
e(s) = sap + Zayey(s) = s/ AeE-DIB(1) .
y=1 0

By differentiating the previous relation with respect to s and taking the limit as
s — 1, the previous relation implies that: Ei[rp] = (1 — p)~'. Since {0,1} is an

atom, we may use Theorem P.4 with C' = {0,1}, r = 1 and vy = 1. In this case

Uo(SL’) = ‘/o(x) = 1+Ex[0'0] = 1+Ex—1[7—0]1{x22} = 1 + (1 — p)_l(l’ — 1)]1{1,22} .
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Theorem P.1] shows that, for any (z,2’) € N x N and any functions « and [
satisfying (R.9),

a()||[P"(z,) = P"(@')lls <1+ (1= p) (@ V' = 1)Laversy -

Convergence bounds a(n)||P"(z, ) — 7||s can be obtained by integrating the
previous relation in x’ with respect to the stationary distribution 7 (which can
be computed using the Pollaczek-Khinchine formula).

It is possible to choose the set C'in a different way, leading to different bounds.
One may set for example C' = {0,...,z}, for some o > 2. For simplicity,
assume that the sequence {a;},>o is non-decreasing. In this case, for all x € C
and y € N, P(z,y) = ay—p11{y>o-1} = ayl{y>z,-1} and the set C satisfies
with ¢ & > oreno—1 @y and v(y) = € 'a,l{y>p,-1y. Taking again r(k) = 1 and
vo(x) = 1, we have

Up(z) = Vo(z) = 1 + Elro]lee(x) = 1+ Ey 1] 1oe(2)
=14 Ey_py[0]lee(z) =14+ (1 — p) " 2 — 20) e ()
To apply the results of Theorems P.4, we finally compute a bound for by, =
supe QUy = (1 — €)7!supy PUy — ev(Uy)], which can be obtained by combin-
ing a bound for sup, PUj and the expression of v(Up). An expression v(Up) is
computed by a direct application of the definitions. The bound for sup. PUj is
obtained by noting that, for all y > 2y and x € C, P(z,y) < P(20,y) = Gy—zo+1,

which implies

PU(](SL’) = Em[Tc] = 1 + Em [EXl [Tc]ﬂ{.rc>1}} = 1 —FEx [Exl [Two]ﬂ{XlgC}}

=14+(1-p)" Y (—2)Ply) <1+1=p) " Y (¥ — 20)ay—sps1 -
y=z0+1 y=z0+1

We provide some numerical illustrations of the bounds described above. We use

the distribution of service time suggested by in Roughan et al] ([99§) given by

aB e 5" x<B
b(x) = (3.2)
aBY %g~*t! 1> B
where B marks where the tail begins. The mean of the service distribution is
= B{l+e*/(a—1)} /o and its Laplace transform, G(s) = [~ e **dB(t
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s € C, Re(s) > 0, is given by
1 _ e (sB+a)
G(s) = O + aB“Re “s*T'(—a, sB) ,
where I'(z, z) is the incomplete I" function. The probability generating function
P.(z) of the stationary distribution is given by the Pollaczek-Khinchine formula
(1—p)(z = DGR = 2))
z—G(A1—2)) '

In figures [l and P}, we display the convergence bound || P™(x, -)—7 ||ty as a function

P(z) =

of the iteration index n, for x = 10, a = 2.5, different choices of the small set
upper limit zy = 1, 3, 6, and two different values of the traffic p = 0.5 (light traffic)
and p = 0.9 (heavy traffic). Perhaps surprisingly, the bound computed using the
atom C' = {0, 1} is not better uniformly in the iteration index n. There is a trade
off between the number of visits to the small set where coupling might and the
probability that coupling is successful. In the heavy traffic case (p = 0.9), the
queue is not very often empty, so the atom is not frequently visited, explaining
why deriving the convergence bound from a larger coupling set improves the

bound (this effect is even more noticeable for a critically loaded system).

Insert figures [ and [] approximately here

3.2. The Independence Sampler. This second example is borrowed from
bnd Robertd (RO0T]). It is an example of a Markov chain which is stochastically

monotone w.r.t a non-standard ordering of the state and does not have an atom

at the bottom of the state-space.

The purpose of the Metropolis-Hastings Independence Sampler is to sample
from a probability density 7 (with respect to some o-finite measure p on X),
which is known only up to a scale factor. At each iteration, a move is proposed
according to a distribution with density ¢ with respect to u. The move is accepted

def g(z) m(y)

with probability a(z,y) = @ aw) 1. The transition kernel of the algorithm is

thus given by

Pla4) = [ ale.pao) aldn 140 [ (1=ale.))atw) nid). weX A€ .

It is well known that the independence sampler is stochastically monotone with

respect to the ordering: 2’ <z & Lz)) < fr((f,)) Without loss of generality, it is

(
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assumed that 7(x) > 0 for all x € X and that ¢ > 0 7-a.s.. For all n > 0, define
the set

Cndéf{xEX'Mzn}. (3.3)

()
For any n > 0, we assume that 0 < 7(C,) < 1 and we denote by v,(:) the
probability measure v, (-) = w(- N C,)/7(C,). For any = € C,,

(1) 20

m(z)  w(y)

P(z, A) > /

A

) (y)p(dy)

atx) | aly) ™ T = nn(C,)v,
> [ (55 B ) wlunte) = ne(AN ) = nr(Con(),

showing that the set ), satisfies with v = v, and € = nm(C,).

Proposition 3.1. Assume that there exists a decreasing differentiable function
K :(0,00) — (1,00), whose inverse is denoted by K, satisfying
(1) the function ¢(v) = vK~1(v) is differentiable, increasing and concave on
[1,00), lim, o @(v) = 00, and lim,_,, ¢'(v) = 0.
def

(2) 0+°O uK (u)dy(u) < oo, where forn >0, ¥(n) = 1 —x(C,).

Then, for any n* satisfying
=0} o0) > [ @amE @)

assumption is satisfied with Wy = K o (¢/7), C = Cy» and

¢o(v) = {1 —v(n")}e(v) — /Ooo(u A1) (u)di(u) .
In addition,
sup PW, < /0 uK (u)dy(u) + K(n*) .

SCEC,,]*

To illustrate our results, we evaluate the convergence bounds in the case where
the target density 7 is the uniform distribution on [0, 1] and the proposal density
is g(z) = (r + 1)a"1jg1y(z). Proposition B.] provides a mean to derive a drift
condition of the form PW, < Wy — ¢ o Wy outside some small set C' for functions
¢ € C of the form ¢(v) = cv'=* + d for any o € [1,1+ 1/r). In this case, the
function v is given by ¥ (n) = (n/(r + 1))¥/", for n € [0,r + 1] and ¥(n) = 1
otherwise. We set, for u € [0,7 + 1], K(u) = (u/(r + 1))~®. The integral
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[ uK (u)di(u) = % is finite provided that o < 1+ 1/r. The function
d(u) = uK~(u) = u'=Y%(r + 1) belongs to C provided that a > 1.

Using these results, it is now straightforward to evaluate the constants in The-
orem P.TJ; this can be employed to calculate a bound on exactly how many iter-
ations are necessary to get within a prespecified total variation distance of the
target distribution. In figures | and [, we have displayed the total variation
bounds to convergence for the instrumental densities ¢(z) = 32? (r = 2) and
q(x) = (3/2)y/x. We have taken o = 1.1 and n* = 0.25 for r = 2 and @ = 1.5 and
n* = 0.5 for r = 1/2. When (r = 2, a = 1.1) the convergence to stationarity is
quite slow, which is not surprising since the instrumental density does not match
well the target density at zero x = 0: according to our computable bounds, 500
iterations are required to get the total variation to the stationary distribution
below 0.1. When r = 1/2, the degeneracy of the instrumental density at zero is
milder and the convergence rate is significantly faster. Less than 50 iterations

are required to reach the same bound.

4. PROOF OF THEOREM

The proof is based on the pathwise coupling construction. For (z,z") € X x X,
and A € X ® X, define P the coupling kernel as follows

P(z,2',0; A x {0}) = (1 — eloxe(x, 2)) Pz, 2', A)

P(z,2",0; A x {1}) = elgxe(z, 2 )v(AN{(z,2) € X x X,z = 2'})
P(x,2',1;Ax{0}) =0

p

(2,0, 15 A x {1}) = / Ple,dy)La(y.y)

For any probability measure (z,2") € Xx X, denote P, - and E, ,» the probability
measure and the expectation on associated to the Markov chain {(X,,, X/, d,) }n>0
with transition kernel P starting from (Xg, X},0) = (x,2’,0). In words, the
coupling construction proceeds as follows. If d, = 0 and (X,,, X)) € C x C,
we draw (X,41, X.,;) according to P(z,2',-) and set d,; = 0. If d, = 0 and
(X,, X)) € C x C, we draw a coin with probability of heads e. If the coin
comes up head, then we draw X, from v and set X/, = X, and d,, 1 =1

(the coupling is said to be successful); if the coin comes up tails, then we draw
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(Xnt1, X, 41) from P(X,, X' ) and we set d,+; = 1. Finally, if d,, = 1, we draw
Xy41 from P(X,,-) and set X, 11 = X/ ;.
By construction, for any n, (z,2’) € X x X and (4, A") € X x X,

P, o(Zy € Ax X x {0,1}) = By o(X, € A) = P"(z, A) and
Py o(Zn € X x A % {0,1}) = By (X! € A') = P2/, A') .

By ([Douc et al], P004H, Lemma 1), we may relate the expectations of functionals

under the two probability measures Px,xl,o and Ip’x,x/, where vax/ is defined in

(B-]): for any non-negative adapted process (xx)r>o0 and (z,2") € X x X,

Ey v olXnlirsny] = Eow [xn (1 — €)1, (4.1)

where N, is the number of visit to the set C' x C before time n,
N, Z Lo, <n} = Z loxe(Xi, X1) . (4.2)

Let f : X — [0,00) and let ¢ : X — R be any Borel function such that
sup,ex |9(2)]/f(x) < co. The classical coupling inequality (see e.g. ([[horisson,

P00Q, Chapter 2, section 3)) implies that
|P" (2, 9) — P"(2',9)| = |Esur0[9(X0) — 9(X)]]
< ilell)zlg( )/ f(@) Bowr o [(f(Xn) + f(X}))1{d, = 0}] ,

and (f.1]) shows the following key coupling inequality:
1P (x,) = P, )l < B {(F(X0) + FX))(1 =)} (4.3)

Because by definition a(u)5(v) < pu+(1—p)v for all (u,v) € RT x R* and any
non negative function f satisfying f(z)+f(z') < oV (z, ') for all (z,2") € XXX,
the coupling inequality (I.3) shows that

ao{R(n)+ My}||P"(z,-) = P"(a', )|y
< ao{R(n) + My} E, o [{f(Xn) + F(X})}(1 = )]
< p{R() + My} By [(1 = M=) + (1= p) By [V (X, X,)(1 = )]



COMPUTABLE CONVERGENCE RATES FOR MARKOV CHAINS 17

Set for any n > 0, Un(z,2') = E, [> 755 r(n+k)]. It is well known that

{Up, }n>0 satisfies the sequence of drift equations
PU, < U, —r(n)+byr(n)lexe (4.4)

Similarly, PV <V — v + by loye. Define for n > 0,

—_

WO Ly (X, XY+ S r(k) + My,
0

bl
—

WO Ly, XD+ o(Xe, X)) + My
k=0

with the convention » " = 0 when u > v.
Since by construction, for any n > 1, W\ > R(n) and W\" > V(X,, X!), the
previous inequality implies,
ao R(n)|P"(x, ) = P"(a', )|y
B0 (1= 4 B V(1 - ]

We now have to compute bounds for E} [Wr(f)(l —€)Nn-1] i =0, 1. Define

of T byr(i)l X;, X! of T by 1 X;, X!
:H 04 ur(i (ch( ) and T :H Y by C><)C'( ) _
1=0 W Wz
(4.5)
Ife=1, (1— €)' =1y}, where o9 = inf{n > 0| (X,,, X},) € C x C} is the
first hitting time of the set C' x C: 7o Ligo>ny = Ligy>n) < 1. Consider now the

case € < 1. By construction, for N,,_; = 0, T(Z =1 and for N,,_; > 0,

Np—1—1 (0) Np—1—1 (1)
Wo’- b 1 Wa’~ b
o - I 2t 0r(9) g T = [ 2= (o)
8 — Wi ! eoow

where o; are the successive hitting time of the set C' x C' recursively defined by
o1 = inf{n > o; | (X,,, X)) € C x C}. Because W > R(n + 1) + My, and
1+byr(n)/{R(n+1)+ My} <1/(1 —¢), for N,_; > 0, we have

Np_1—1
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Similarly, because W > My and 1 + by /My < 1/(1 — €), we have Tél)(l _

€)Nn=1 < 1. These two relations imply, for i = 0, 1,
E;,x’ [W1EO)(1 - €)N7L71:| S E;,x’ [W1EO){T7(LO)}_1:| 9

E: (W (1= )] <Ep,, [W{TY .

n

It remains now to compute a bound for E} , [W,@{T ,@}‘1] By construction,

we have for n > 1,

Boor [WOH{T} | Focd]
W,
0| Furr] — 1 / (T 31 (4.8)
Wn—l + bU’I“(TL - l)ﬂCxC(Xn—la Xn—l)

where F,, = 0 {(Xo, X{), ..., (Xn, X)}. Now, (E4) yield:

=K, [W,

By (WO | Foia] < WO+ bpr(n — Dloxe(Xno1, Xi_y) - (4.9)

Combining ([.§) and ([.9) shows that {Wn {T(0 = } is a F-supermartingale.

n>0
Thus,
B WO - ™) < B (WAL ] < B Wg") = Us(e, ') + My -

Similarly, E} ., [W,Sl)(l - e)N"*l} < V(x,2") + My, which concludes the proof of
Theorem R.1].

5. PROOF OF PROPOSITION .2, THEOREM 2.3

Proof of Proposition [2.3. By applying the comparison Theorem (Meyn and Tweedid,

[993) and (Douc et al], P004d, Proposition 2.2), we obtain the following inequal-
ities. Then, for all (z,2") € X x X,

[Toxc—1 -1

; B , ¢poH, (1) ,

Eg o 2_: ¢o H¢1(7f)] < Wz, 2') -1+ quT:%l(O)ﬂCxC(%fc ), (5.1
[Toxc—1

Ex’x/ Z ¢ o W(Xk, X]/f)] S W(LL’, SL’/) + bﬂCXc(l’, SL’/) . (52)
L k=0

The sequence {¢ o H(;l(k:)}kzo is log-concave. Therefore, for any k& > 0, ¢ o
H; 'k +1)/6 0 H; (k) < 60 Hy'(1)/é 0 H;'(0). Then, applying (EJ), we
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obtain:
5 oCcxcC 5 TCxC
R, Z ¢poHy' (k)| = o H'(0) + Eq Z ¢ o H(;l(k)] Loxoye (T, 2)
k=0 k=1
_ ¢oH (1) . | .
< Cb o H¢ 1(0) + (ﬁOTil(O)EI’II Z ¢ o Hd)l(k‘ — 1) ﬂ(CXC)c(ZL’,ZL'/) 5
¢ k=1
showing (R.16). Similarly,
5 oCcxcC
Ex’x/ Z (bOW(Xk,X;ﬁ)] = ¢OW($,$/)HCX0($,$/)
k=0
3 Toxc—1 3
+Em,m’ Z ¢ o W(Xk7 X]é)] H(CXC)C (SL’, x/)_'_Ex,x’ [¢OW(X7'7 X—/r)] I[(CXC)C (LU, ZL’/)
k=0
showing (R.17). O

Proof of Theorem [2.3. Since dy = inf,qc Wy(x), if (z,2') ¢ C x C, W(z,2") > dy
and 1o(z) + 1o(2') < 1 since either ¢ C, 2’ € C (or both). The definition of

the kernel P therefore implies

PW (z,2') < Wo(z) + Wo(2') — 1 — dg o Wo(2") — ¢ 0 Wo(a') 4 by {1o(x) + Ta(2)}
< W(ZL’,I’/) - ¢0 © W(ZL’,I’/) + bO )

where we have used the inequality: for any u > 1and v > 1, ¢g(u+v—1)—¢g(u) <

¢o(v) — ¢o(1). For (z,2') & C, by < (1 — XN)po(d) < (1 — N)gpg o Wy(z, 2’) and the
previous inequality implies PW (z,2") < W{(xz,2') — ¢ o W (x,2'). O

APPENDIX A. PROOF OF PROPOSITION B.]]

Let W be any measurable non negative function on X. Then, for n > 0 and

x & Cy,

PW (x) — W(x) = / alz, ) (W (y) — W(z)q(y)u(dy)

X

< /X (n/\ %) W(y)ﬂ(y)u(dy)—W(ﬂf)/a(fc,y)q(y)u(dy)-

X
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If ¢ C,, and y € C,, then y < z and a(z,y)q(y) = (¢(x)/m(x)) ©(y). Thus, we

have:

[ atespawntan) = [ ottty - 1) oy = 1D 4y,

Cy m(z)

Altogether, we obtain, for all z ¢ C,:

i) - W) < [ (08 Z0) wistutan - (- o) 45w )

X m(y) (x)
(A1)
Applying the definition of Wy, we now have:
/X (M 7T(y)) Wo(y)m(y)p(dy)
= M M m = h u)K(u u) < 00
= [(2n 82 & (5 rtomtan = ["nwK st < . (42

By Lebesgue’s bounded convergence theorem, lim,_o [~ (n A u) K (u)dy(u) = 0.
Since moreover lim, o1 (n) = 0, hence, for  small enough, {1 — ¥(n)}p(M) >
Jo-(n A u) K (w)dip(u), hence n* is well defined. Now, () and (BE3) yield, for
all g Cn*,
PWo(x) = Wo(z) < / (7" A u) K (u)dip(u) — (1= (")) Wo(a) K~ o Wo(z)
0
= —¢o(Wo(z)).

For x € C,, we have Wy(z) < K(n*). Finally, we have, for any = € C,.,

PWo(z) < / () Woly)u(dy) + Wo(a)

L

= [ ke (L) wpntan) + W) < [ ukluaot) + KGo)
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