Inverse spectral problem for radial Schrödinger operator on [0, 1] - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 2007

Inverse spectral problem for radial Schrödinger operator on [0, 1]

Résumé

For a class of singular Sturm-Liouville equations on the unit interval with explicit singularity $a(a + 1)/x^2, a \in \mathbb{N}$, we consider an inverse spectral problem. Our goal is the global parametrization of potentials by spectral data noted by $\lambda^a$, and some norming constants noted by $\kappa^a$. For $a = 0$ and $a=1$, $\lambda^a\times \kappa^a$ was already known to be a global coordinate system on $\lr$. With the help of transformation operators, we extend this result to any non-negative integer $a$ and give a description of isospectral sets.
Fichier principal
Vignette du fichier
Schrodinger-base.pdf (285.83 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00008663 , version 1 (13-09-2005)

Identifiants

Citer

Frédéric Serier. Inverse spectral problem for radial Schrödinger operator on [0, 1]. Journal of Differential Equations, 2007, 235, pp.101-126. ⟨10.1016/j.jde.2006.12.014⟩. ⟨hal-00008663⟩
425 Consultations
158 Téléchargements

Altmetric

Partager

More