Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels - Archive ouverte HAL
Article Dans Une Revue Archive for Rational Mechanics and Analysis Année : 2007

Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels

Résumé

Kinetic transport equations with a given confining potential and non-linear relaxation type collision operators are considered. General (monotone) energy dependent equilibrium distributions are allowed with a chemical potential ensuring mass conservation. Existence and uniqueness of solutions is proven for initial data bounded by equilibrium distributions. The diffusive macroscopic limit is carried out using compensated compactness theory. The result are drift-diffusion equations with nonlinear diffusion. The most notable examples are of porous medium or fast diffusion type, with exponent ranging from 0 to 5/3, in dimension 3.
Fichier principal
Vignette du fichier
DoMaOeSc.pdf (273.86 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00005892 , version 1 (11-07-2005)

Identifiants

  • HAL Id : hal-00005892 , version 1

Citer

Jean Dolbeault, Peter Markowich, Dietmar Oelz, Christian Schmeiser. Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels. Archive for Rational Mechanics and Analysis, 2007, 186 (1), pp.133-158. ⟨hal-00005892⟩
224 Consultations
236 Téléchargements

Partager

More