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Abstract

Kinetic transport equations with a given confining potential and non-linear relaxation type collision
operators are considered. General (monotone) energy dependent equilibrium distributions are allowed
with a chemical potential ensuring mass conservation. Existence and uniqueness of solutions is proven
for initial data bounded by equilibrium distributions. The diffusive macroscopic limit is carried out using
compensated compactness theory. The result are drift-diffusion equations with nonlinear diffusion. The
most notable examples are of the form ∂tρ = ∇ · (∇ρm + ρ∇V ), ranging from porous medium equations
to fast diffusion, with the exponent satisfying 0 < m < 5/3 in R

3.
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1. Introduction

We consider the scaled kinetic equation

ε2 ∂tf + ε [v · ∇xf −∇xV (x) · ∇vf ] = Q(f) , (1.1)

Q(f) := Gf − f , Gf := γ
(1

2
|v|2 − µ̄(ρf (x, t))

)

, (1.2)

where the distribution function f = f(x, v, t) depends on position x ∈ R
3, velocity v ∈ R

3, and time t > 0.
The collision model is a simple relaxation kernel towards a generalized local Gibbs state Gf . The chemical
potential µ̄(ρf ) is determined implicitly by the condition

∫

R3 Gf dv = ρf :=
∫

R3 f dv, or equivalently

ρ =

∫

R3

γ

(
1

2
|v|2 − µ̄(ρ)

)

dv . (1.3)

We are interested in the diffusion limit ε→ 0 which corresponds to a large time scale and a high collision
frequency limit. We prove that in the limit ε → 0, the distribution function f is a local Gibbs state:
f = Gf , whose density is subject to a nonlinear diffusion equation

∂tρ = ∇x · (∇x ν(ρ) + ρ∇xV (x)) .

The main modelling ingredient is the energy dependent equilibrium profile γ(E) ≥ 0, which is assumed
to be nonincreasing. The given external potential V (x) will be assumed to be ‘confining’. An appropriate
definition of this property depends on the profile γ and will be given below. Functions of the total energy
|v|2/2 + V (x) constitute the kernel of the transport operator on the left hand side of (1.1). Therefore,
the definition of the quasi Fermi potential µρ(x, t) := µ̄(ρ(x, t)) + V (x) will be convenient. In particular,
equilibrium distributions with constant quasi Fermi potential are steady state solutions of (1.1).

The equation (1.1) is considered subject to initial conditions

f(x, v, 0) = fI(x, v) (1.4)
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with fI ∈ L1
+(R3 × R

3). The total mass M :=
∫

R6 fI(x, v) dx dv is formally preserved by the evolution,
i.e.,

∫

R6 f(x, v, t) dx dv = M for all t > 0. For notational convenience, we restrict our attention to the
three-dimensional problem. Generalizations of our results to other dimensions are straightforward.

1.1. Modelling and references

Reducing kinetic equations to macroscopic equations is a standard procedure, at least from a formal
point of view. At the kinetic level, it is easy to relate the parameters with simple physical quantities since
characteristics in the phase space can be interpreted in terms of particle dynamics. The price to pay is
the high dimensionality of the phase space. On the other hand, hydrodynamical equations or parabolic
models are in principle simpler to compute, but their direct derivation is far less intuitive. This motivates
the study of hydrodynamics or diffusion limits, with the idea that the models are easier to build at the
kinetic level, but that one is mostly interested only in the macroscopic observables.

Nonlinear diffusion equations have attracted a lot of attention over the last few years, because of their
deep mathematical properties and the physical interpretation of their naturally associated Lyapunov
functionals. A very striking point of view is to consider these equations as the gradient flow of their
Lyapunov functionals with respect to some appropriate notion of distance. However the derivation of
such nonlinear diffusion equations in a physical context up to now looks rather unclear, although some
properties like finite diffusion speed in the porous media case, make them very appealing from a modelling
point of view. It is the purpose of this paper to provide a justification of nonlinear diffusion equations
as limits of appropriate simple kinetic models. Notice that it is also possible to proceed the other way
around and to reconstruct the Gibbs state at the kinetic level knowing the explicit form of the diffusion
coefficient at the macroscopic level.

The appropriate way to design general collision kernels and on which, experimental or theoretical,
physical grounds they should be established is completely out of the scope of this paper. What we intend
to do here relies on a much more pragmatic approach which can be decomposed as follows:

(1) If the kinetic equilibrium or Gibbs states, are known, or equivalently the energy profiles of such
equilibria, then local equilibria, or local Gibbs states, are easily derived. From a physical point of view,
such local equilibria make sense, whenever local relaxation phenomena occur on a faster time scale than
the global evolution of the solution, thus giving rise to solutions at local equilibrium in the velocity
space. This is particularly the case in models with collisions. Transfer of momentum during a collision is
generally assumed to occur on a faster time scale than transport related effects like the ones induced by
mean field forces, and are usually considered to be instantaneous. Thus local or global Gibbs states will
be considered in our approach as basic input for the modeling. This is a very standard assumption for
instance in semiconductor theory when one speaks of Fermi-Dirac distributions, or when one considers
polytropic distribution functions in stellar dynamics.

(2) Non monotone energy profiles result in various pathologies like linear and nonlinear instabilities. On
the opposite, a monotonically decreasing energy profile provides a consistent way of finding a convex Lya-
punov functional which, under appropriate constraints like mass conservation, allows to characterize the
global Gibbs state as its unique minimizer. From a mathematical point of view, the Lyapunov functional
is the sum of the total energy and of a convex nonlinear entropy based on the Legendre transform of a
primitive (up to a sign) of the energy profile.

(3) In our approach, we say nothing about the physical phenomena responsible for the relaxation towards
the local Gibbs state and, on the long time range, towards the global Gibbs state. We only derive the
nonlinear diffusion limit in a way which is consistent with the Gibbs state. This is why we introduce at
the kinetic level a caricature of a collision kernel, which is simply a ‘projection’ onto the local Gibbs state
with the same spatial density, thus introducing a local Lagrange multiplier which will be referred to as
the chemical potential. In the mathematical literature, such a collision kernel is known as a relaxation-
time kernel. At least in the long time asymptotics, such a kernel is generally believed to be a reasonable
approximation of more realistic physical kernels.

Diffusion limits appear when collision effects become dominant, but also when one is interested in long
time effects so that phenomena due to convection, which would be essential in the hydrodynamical regime,
are also dominated by diffusion. This can be derived in physical situations by an adimensionalization of
the equation and a proper scaling. To stick to our purpose and since this is by many aspects standard, we
refer for instance to [18] for the equations with correct physical parameters in the semiconductor context.
Here ε will simply be a small positive parameter and we are interested in the singular limit ε→ 0.

To come back to the two fields of applications quoted above, let us mention that in astrophysics,
power law Gibbs states are well known (see, e.g., [5], and [16] for some mathematical properties of such
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equilibrium states), thus justifying on reasonable grounds how diffusion models can be introduced starting
from more fundamental models (see for instance [7] for recent results in astrophysics and two dimensional
turbulence, and references therein for earlier papers). Note by the way that nonlinear diffusions with
vanishing diffusion coefficients, like for the porous media model, cure one of the major problem of linear
diffusion, namely the non-existence of global Gibbs states with finite mass coupled with gravitational
interaction in a Euclidean space. Lyapunov functionals corresponding to porous media in an astrophysical
context are usually called Tsallis entropies, referring to [22].

In the mathematical study of diffusion limits for semiconductor physics, more results are known,
starting with [11,12]. The reference paper has been written by Goudon and Poupaud [15], but many
other works deal with some more specific cases [21,3,1,4,8,19,14,13]. Some of the results of this paper
were written at a formal level in [2].

1.2. Formal macroscopic limit

Consider formal asymptotic expansions f = f0+εf1+O(ε2), Gf = G0+εG1+O(ε2), µρf
= µ0+O(ε),

and ρf = ρ0 +O(ε). Then, by going to the limit ε→ 0 in (1.1), we obtain, at lowest order in ε,

f0(x, v, t) = G0(x, v, t) = γ(|v|2/2 + V (x) − µ0(x, t)) and ρ0 =

∫

R3

f0 dv .

Notice that µ0 = µ̄(ρ0) + V . The O(ε)-terms in (1.1) give

v · ∇xf
0 −∇xV · ∇vf

0 = G1 − f1 ,

which can be rewritten as

f1 = ∇vγ(|v|2/2 + V − µ0) · ∇xµ
0 +G1 . (1.5)

Now we pass to the limit in the continuity equation

∂tρf +
1

ε
∇x ·

∫

R3

vf dv = 0 ,

and obtain

∂tρ
0 + ∇x ·

∫

R3

vf1 dv = 0 .

For the evaluation of the flux, we use (1.5). Since G1 is an even function of v, it does not contribute, and
we end up with

∂tρ
0 = ∇x · (ρ0 ∇xµ

0) .

Equivalently, since µ0 = µ̄(ρ0) + V , we may write

∂tρ
0 = ∇x · (D(ρ0)∇xρ

0 + ρ0 ∇xV ) = ∇x · (∇x ν(ρ
0) + ρ0 ∇xV (x)) , (1.6)

with

D(ρ) = ρ µ̄′(ρ) and ν(ρ) :=

∫ ρ

0

D(ρ̃) dρ̃ . (1.7)

This equation has to be supplemented with the initial condition

ρ0(x, 0) = ρI(x) :=

∫

R3

fI(x, v) dv . (1.8)

Formally, this can be derived considering an initial layer governed by the equation ∂τf = Q(f), τ = t/ε2,
and using mass conservation. The main result of this paper is a rigorous justification of this formal
asymptotic expansion.
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1.3. Reconstruction of energy profiles

Consider the inverse problem of finding an equilibrium profile γ producing a given macroscopic equa-
tion of the form (1.6). The macroscopic model is determined by the chemical potential function µ̄(ρ),
which is itself determined by (1.3). The inverse of µ̄ is explicitly given by

(µ̄−1)(θ) = 4π
√

2

∫ ∞

−θ
γ(q)

√

θ + q dq .

Differentiation with respect to θ leads to the Abelian equation

(µ̄−1)′(θ) = 2π
√

2

∫ ∞

−θ

γ(q)√
θ + q

dq . (1.9)

This identity can be inverted (see [20], pp. 9, 10) and gives an explicit expression for γ in terms of µ̄−1,
which can be written as

γ(E) =
1

2π2
√

2

d2

dE2

∫ ∞

0

µ̄−1(−θ − E)
dθ√
θ
.

We refer to [10] for a generalization to other space dimensions. Note that convexity of µ̄−1 is sufficient
for obtaining a nonnegative equilibrium profile. A precise classification of all µ̄−1 corresponding to non-
negative γ is not known, however (see [10] for a discussion).

1.4. Assumptions

Our rigorous justification of the macroscopic limit covers all the examples of equilibrium profiles
described in the last section. This involves quite a range of different qualitative behaviours including
equilibrium profiles with compact support. This generality comes at the expense of a number of technical
assumptions.

(a) γ in the case E2 = ∞ satisfying (1.10). (b) γ with −∞ < E1 < E2 < ∞.

Fig. 1. Exemplary graphs of the energy profile γ.

Assumption 1 The energy profile, or Gibbs state, γ ∈ C((E1,∞),R+) with E1 ≥ −∞ is nonincreasing
and nonnegative. It is continuously differentiable on its support (E1, E2) with γ′(E) < 0 for E1 < E < E2.
There exists a Ê < E2, such that γ is either convex or concave on the interval (Ê, E2).

The following two assumptions refer to the cases of bounded and unbounded supports separately.

Assumption 2 If E2 = ∞, there are constants E and τ > 0 such that

either
−γ′(E)

γ(E)
≤ 1

τ
for E > E , (1.10)

or
−γ′(E)

γ(E)
≥ 1

τ
for E > E . (1.11)

Moreover, in case (1.10) (cf. figure 1(a)), there exists a δ > 0 such that

γ(E) = O(E−5/2−δ) as E → ∞ . (1.12)
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By (1.10), (1.11), the decay is bounded by an exponential either from above or from below, and by
(1.12) it is fast enough to ensure the existence of second order velocity moments. As a map from (E1, E2)
to (0, γ(E1)), γ is invertible. The inverse will be used below. Assumptions 1 and 2 also guarantee that
the function µ̄(ρ) defined by (1.3) is invertible as a map from (0, ρ̄) to (−E2,−E1), where the maximal
density

ρ̄ := lim
−µ̄→E1+

∫

R3

γ(|v|2/2 − µ̄) dv (1.13)

can be finite for E1 > −∞.

Assumption 3 If E2 <∞ (cf. figure 1(b)), there are constants k > 0 and C > 0 such that

γ(E) ≤ C(E2 − E)k for Ê < E < E2 . (1.14)

For the initial data we assume boundedness by a stationary solution of (1.1).

Assumption 4 There is a constant quasi Fermi energy µ∗ < −E1 such that

0 ≤ fI(x, v) ≤ f∗(x, v) := γ
(1

2
|v|2 + V (x) − µ∗

)

, ∀(x, v) ∈ R
6 . (1.15)

It will be shown in the following section that this bound is propagated by (1.1). Finally, we collect
our assumptions on the confining potential V .

Assumption 5 The potential V is bounded from below and satisfies

V ∈ C1,1(R3) . (1.16)

It is ‘confining’ in the sense that the upper bound f∗ for the initial data has finite mass and energy:
∫∫

R6

(

1 +
1

2
|v|2 + V (x)

)

f∗(x, v) dv dx <∞ . (1.17)

Remark 1 If γ has compact support, then f∗(x, v) has compact support as a function of v. If additionally
V (x) ≥ E2 + µ∗ outside of a compact set in R

3
x, then f∗ has compact support in R

6. Obviously, (1.17) is
satisfied in this situation.

Our main result is the following

Theorem 1 Under Assumptions 1–5, for any ε > 0, the problem (1.1)–(1.4) has a unique weak solution
fε ∈ C(0,∞;L1∩Lp(R6)) for all p <∞. As ε→ 0, fε weakly converges to a local Gibbs state f0 given by

f0(x, v, t) = γ

(
1

2
|v|2 + V (x) − µ̄(ρ(x, t))

)

∀ (x, v, t) ∈ R
3 × R

3 × R+ ,

where ρ is a solution of the nonlinear diffusion equation

∂tρ = ∇x · (∇x ν(ρ) + ρ∇xV (x)) (1.18)

with initial data ρ(x, 0) = ρI(x) :=
∫

R3 fI(x, v) dv. Here ν is given by

ν(ρ) =

∫ ρ

0

s µ̄′(s) ds .

Moreover,
∫

R3 f
ε dv strongly converges to ρ in Lp

loc
as ε→ 0.

Remark 2 Notice that as a consequence of Theorem 1, there exists a global weak solution of (1.18) with
initial data ρI . We are however not aware of a result of uniqueness under such general assumptions.
Since we are using compactness arguments in the proof, the diffusion limit has to be understood up to the
extraction of a sequence (εi)i∈N converging to zero, whenever uniqueness is not guaranteed. For simplicity,
we will however abusively speak of the convergence as ‘ε→ 0’.

The rest of this article is organized as follows. In Section 2, existence and uniqueness of solutions of
the initial value problem for (1.1) is proven with some additional details. The main part is Section 3,
where the macroscopic limit is rigorously justified. Finally, Section 4 contains a number of examples
satisfying the above assumptions. Unless we are explicitly considering the limit ε → 0, we will simply
write f instead of fε.
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2. Existence and uniqueness

Proposition 2 Let Assumptions 1, 4, and 5 by satisfied. Then the problem (1.1)–(1.4) has a unique
weak solution in f ∈ C(0,∞;L1 ∩ Lp(R6)) for all p ∈ [1,∞) satisfying f ∈ L∞(R6 × (0,∞)), ρf ∈
L∞(R3 × (0,∞)), with 0 ≤ f(·, ·, t) ≤ f∗ and 0 ≤ ρ(·, t) ≤ ρ∗ :=

∫

R3 f
∗dv for all t > 0.

Proof. The result is an adaption of a result stated in [21], where, due to a different choice of the
scattering operator, the inhomogenities of the linear problems involved in the proof take a different form
and therefore have to be treated with different arguments. For a given f ∈ V := {f ∈ C(0, T ;L1(R6)) :
0 ≤ f ≤ f∗}, let g = Γ (f) be the solution of the linear transport problem

ε2 ∂tg + ε
(

v · ∇xg −∇xV · ∇vg
)

= Gf − g , with Gf = γ

(
1

2
|v|2 − µ̄(ρf )

)

,

g(t = 0) = fI ,

constructed by the method of characteristics. Obviously, fixed points of Γ correspond to solutions of
(1.1), (1.4). First we show that Γ maps V into itself, and then that it is a contraction for sufficiently
small time intervals.

As a consequence of the nonnegativity of fI and Gf , g is nonnegative by the maximum principle. The
function r := f∗ − g solves the linear transport problem

ε2 ∂tr + ε
(

v · ∇xr −∇xV · ∇vr
)

+ r = f∗ −Gf =: S ,

r(t = 0) = f∗ − fI ≥ 0 ,

where S = Gf∗ −Gf is nonnegative because γ is decreasing, µ̄ is increasing and

ρ∗ =

∫

R3

f∗ dv ≥
∫

R3

f dv = ρf

by assumption. Therefore also r is nonnegative and V is stable under the action of Γ .
In order to prove the contraction property, consider two functions f1, f2 in V and let w := Γ (f2) −

Γ (f1). Then w is a solution of the problem

ε2 ∂tw + ε v · ∇xw − ε∇xV · ∇vw + w = Gf2 −Gf1 =: U , (2.1)

w(t = 0) = 0 . (2.2)

A multiplication by sign(w) transforms (2.1) into an equation for |w| with the inhomogeneity replaced
by sign(w)U . The integration of this equation with respect to x and v implies

ε2
d

dt
‖w(., ., t)‖L1(R6) ≤ ε2

d

dt
‖w(., ., t)‖L1(R6) + ‖w(., ., t)‖L1(R6) ≤ ‖U(., ., t)‖L1(R6) .

As γ and µ̄ are respectively monotonically decreasing and increasing functions, the sign of Gf2 − Gf1
equals the sign of ρf2 − ρf1 and does not depend on v. Hence for any (x, t) ∈ R

3 × R+,

∫

R3

∣
∣Gf2 −Gf1

∣
∣ dv = |ρf2 − ρf1 | ,

and therefore

‖U(., ., t)‖L1(R6) =

∫

R3

|ρf2 − ρf1 | dx ≤ ‖f2 − f1‖L1(R6) .

This finally leads to the estimate

ε2 ‖Γ (f2)(., ., t) − Γ (f1)(., ., t)‖L1(R6) ≤
∫ t

0

‖f2(., ., s) − f1(., ., s)‖L1(R6) ds ,

implying that Γ is a contraction on C(0, T ;L1(R6)) for T < ε2. The same is true for the spaces
C(0, T ;Lp(R6)), 1 ≤ p < ∞ by interpolation using the L∞-bound. The global L∞ ∩ L1 bound implies
that the solution globally exists.
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3. The Drift-Diffusion limit

Let the free energy be defined by

F(f) :=

∫

R6

[(1

2
|v|2 + V

)

f + βγ(f)

]

dv dx , where βγ(f) := −
∫ f

0

γ−1(s) ds .

As −γ−1 is monotonically increasing, βγ is a convex function. The definition of βγ implies that βγ(0) = 0,
that it achieves its minimum on R+ at

f̄ := γ(max{0, E1})

and that it is negative on (0, f̄). Here we recall and extend some of the results stated on a formal level
in [2].

Let the microscopic energy associated to a distribution function f be denoted by

Ef (x, v, t) :=
1

2
|v|2 + V (x) − µρf

(x, t) =
1

2
|v|2 − µ̄

(
ρf(x, t)

)
.

If f is a solution of (1.1), an elementary computation shows that

ε2
d

dt
F
(
f(., ., t)

)
=

∫

R6

(
γ(Ef ) − f)(Ef − γ−1(f)

)
dv dx := −D(f) . (3.1)

This holds provided f has a sufficient decay at infinity to justify the integrations by parts. Moreover we
used the fact that

∫

R3(Gf − f)µf dv = 0, which is a straightforward consequence of mass conservation.
Since −γ−1 is monotonically increasing, D(f) is nonnegative. However, in the case when γ has compact
support, D(f) does not provide a good control of the distance between f and the local equilibrium Gf .
This will be a major difficulty in our analysis below.

We first establish some a priori estimates on the free energy. By integration of the entropy production
(3.1) on the time interval (0, T ) we obtain

ε2
[

F
(
f(, ., ., t)

)
−F

(
fI
)]

= −
∫ T

0

D(f)(t) dt , (3.2)

which proves that
F
(
f(., ., T )

)
≤ F(fI) for any T > 0 .

If f̄ = 0, βγ is increasing on R+ and we conclude F(fI) ≤ F(f∗). As we shall see below, F(f∗) <∞. In
the case f̄ > 0 we use meas R6({f∗ > f̄}) ≤ (f̄)−1

∫

R6 f
∗ dv dx and obtain

F(fI) ≤
∫

R6

(1

2
|v|2 + V (x)

)

fI dv dx+

∫

fI>f̄

βγ(fI) dv dx

≤
∫

R6

(1

2
|v|2 + V (x)

)

f∗ dv dx+ βγ
(
‖f∗‖L∞

) 1

f̄

∫

R6

f∗ dv dx <∞

by (1.17).
It remains to prove that Ff is bounded from below. For fixed (x, t) ∈ R

3 × R+, the functional Floc :

f(x, ., t) 7→
∫

R3

[

Ef (x, v, t)f(x, v, t) + βγ
(
f(x, v, t)

)
]

dv =: Floc

(
f(x, ., t)

)

is convex and achieves its unique critical point if and only if

0 = Ef (x, v, t) + β′
γ(f) = Ef (x, v, t) − γ−1(f) ,

i.e., if f = Gf is a local equilibrium distribution function. As a consequence:

Floc(f(x, ., t)) ≥ Floc(Gf (x, ., t)) ∀ (x, t) ∈ R
3 × R+ ,

which, after an integration with respect to x, proves that

F(f) ≥ F(Gf ) , (3.3)

using
∫

R3 f dv =
∫

R3 Gf dv again.
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In the case of a local equibrium g(x, v, t) = γ
(
|v|2/2+V (x)−µ(x, t)

)
, we may integrate by parts twice

with respect to vi, i ∈ {1, 2, 3}. Using (βγ ◦ γ)′(E) = −E γ′(E), we get
∫

R3

βγ(g) dv =

∫

R3

vi

(1

2
|v|2 + V − µ

)

∂viγ
(1

2
|v|2 + V − µ

)

dv = −
∫

R3

(1

2
|v|2 + v2

i + V − µ
)

g dv .

This yields

F(g) =

∫

R6

γ
(1

2
|v|2 + V − µ

)(

µ− |v|2
3

)

dv dx =

∫

R3

(
µρg − ν(ρg)

)
dx ,

with ρg = µ̄−1(µ− V ) , and ν(ρ) :=
1

3

∫

R3

|v|2γ
(1

2
|v|2 − µ̄(ρ)

)

dv . (3.4)

Notice that ν′(ρ) = ρ µ̄′(ρ) as follows from an integration by parts. The above definition is therefore
compatible with the one in (1.7). We will come back on this question in Lemma 4. As a consequence,
by (3.3) we obtain that

F(f) ≥ F(ρf )

where F is again a convex functional defined on L1
+(R3) by

ρ 7→
∫

R3

(
µρρ− ν(ρ)

)
dx =

∫

R3

(
ρµ̄(ρ) + ρV (x) − ν(ρ)

)
dx .

Under the constraint
∫

R3 ρ dx = M , F achieves its global minimum at ρ∞ such that

µ̄(ρ∞(x)) + V (x) = µ∞ ,

where µ∞ is the Lagrange multiplier implicitly defined by the constraint
∫

R3

µ̄−1
(
µ∞ − V (x)

)
dx =

∫

R6

f∞ dv dx = M

and

f∞ := γ
(1

2
|v|2 + V (x) − µ∞

)

.

Observe that F(ρ∞) > −∞ by (3.4) and (1.17). We summarize all these observations in the following
result.

Lemma 3 Let Assumptions 1-5 hold, and let f be the solution of (1.1), (1.4), constructed in Proposi-
tion 2. Then

(i) the mass is preserved along the evolution
∫

R6

f(x, v, t) dv dx =

∫

R6

fI(x, v) dv dx ∀ t ∈ R+ ,

(ii) The following estimates hold

−∞ < F(f∞) ≤ F(Gf (., ., t)) ≤ F(f(., ., t)) ≤ F(fI) <∞ ∀ t ∈ R+ .

Proof. All these estimates can be justified by standard regularizations of the initial data fI and of the
potential V . Passing to the limit in the regularization parameter, the estimates on the free energy hold by
semi-continuity, due to the convexity of the functional (µ has to be considered as a Lagrange multiplier
for fixed (x, t) and strongly converges by standard averaging lemmata).

The conservation of mass is then a consequence of the Dunford-Pettis lemma.

Notice that as a consequence of the Dunford-Pettis lemma, any solution f is contained in a relatively
weakly compact set of L1(R6 × R+,loc). From now on, weak convergence at least means convergence in
this sense.

We continue by using the entropy production (3.2) and a technical lemma based on the assumptions
on the energy profile γ to prove uniform estimates on the first and second moments of the solution f . Let
f ≤ f∗. Consider a partition of the support of f∗ given by

Ω+(f) :=

{

(x, v, t) ∈ supp f∗ × (0, T ) : Ef =
1

2
|v|2 − µ̄(ρf (x, t)) < E2

}

,

Ω0(f) :=

{

(x, v, t) ∈ supp f∗ × (0, T ) : Ef =
1

2
|v|2 − µ̄(ρf (x, t)) ≥ E2

}

,

(3.5)
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and define

Ωx,t+ (f) := {v ∈ R
3 : (x, v, t) ∈ Ω+(f)} and Ωx,t0 (f) := {v ∈ R

3 : (x, v, t) ∈ Ω0(f)} . (3.6)

Lemma 4 Let Assumptions 1–3 hold. Then, for any nonnegative function f(x, v, t) ≤ f∗(x, v) there
exists a constant M, which does not depend on x and t, such that

∫

Ωx,t
+

|v|2m γ(Ef ) − f

γ−1(f) − Ef
dv ≤ M ,

for m = 1, 2, and Ωx,t+ := Ωx,t+ (f).

Proof. The proof relies on the sign of γ′′ in (Ê, E2) (see Assumption 1). Observe that f∗(x, v) > γ(Ê)
implies |v|2 < 2(Ê + µ∗).

Assume first that γ is convex on (Ê, E2). We first use the mean value theorem:

−
∫

Ωx,t
+

∩{f∗>γ(Ê)}
|v|2mγ′(Ẽ) dv ≤ sup

−µ∗≤E≤Ê

(
−γ′(E)

)
∫

Ωx,t
+

∩{f∗>γ(Ê)}
|v|2m dv

≤ sup
−µ∗≤E≤Ê

(
−γ′(E)

) 4π

3

(
2(Ê + µ∗)

) 3
2
+m

= C1 .

On (Ê, E2), −γ′ is decreasing, and Ẽ ≥ γ−1(f∗) = |v|2/2 + V (x) − µ∗ implies

−
∫

Ωx,t
+

∩{f∗≤γ(Ê)}
v2m
i γ′(Ẽ) dv

≤ −
∫

R3

v2m
i γ′

(
|v|2/2 + V (x) − µ∗) dv = (2m− 1)

∫

R3

v2m−2
i f∗ dv ≤ C2 .

Consider now the case where γ is concave on (Ê, E2). For fixed x and t, let Λx,t := {v ∈ R
3 :

max
(
f,Gf

)
(x, v, t) ≤ γ(Ê)}. The function v 7→ −γ′(γ−1(f̃(x, v, t))) is bounded on Ωx,t+ \ Λx,t, because γ

is of class C1 on (E1, E2). We infer

−
∫

Ωx,t
+

\Λx,t

|v|2mγ′(Ẽ) dv ≤ 4π

3

(
2(Ê + µ∗)

) 3
2
+m

sup
Ωx,t

+
\Λx,t

(
−γ′(Ẽ(x, ., t))

)
= C1 .

Observe that if γ is concave on (Ê, E2), then E2 is finite. The function

s 7→ χ(s) :=
E2 − γ−1(s)

s

is an increasing and positive function on (0, γ(Ê)) ⊂ R. This allows us to write

γ−1(f) − Ef
Gf − f

=
E2 − Ef
Gf

+
f

Gf − f

(
E2 − Ef
Gf

− E2 − γ−1(f)

f

)

= χ(Gf ) + f
χ(Gf ) − χ(f)

Gf − f
≥ χ(Gf ) > 0 .

We conclude by making use of Assumptions 3, 4, and 5:

∫

Ωx,t
+

∩Λx,t

v2m
i

Gf − f

γ−1(f) − Ef
dv ≤

∫

Ωx,t
+

∩Λx,t

v2m
i

Gf
E2 − Ef

dv

≤ C

∫

Ωx,t
+

∩Λx,t

v2m
i

(E2 − Ef )
k

E2 − Ef
dv = C

∫

Ωx,t
+

∩Λx,t

v2m−1
i

(−1)

k

∂

∂vi

[
(E2 − Ef )

k
]
dv

≤ C

∫

R3

v2m−2
i (E2 − Ef )

k
+ dv ≤ C(E2 + µ∗)k+

1
2
+m ≤ C2 ,

where we used C to represent various constants.
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Starting to investigate the limit ε→ 0, we denote the solution of (1.1) by fε from now on. With the
definition (3.5), the equation (3.2) can be rewritten as

O(ε2) =

∫

Ω+(fε)

(
γ(Efε) − fε

)(
γ−1(fε) − Efε

)

︸ ︷︷ ︸

≥0

dx dv dt

+

∫

Ω0(fε)

fε
(
Efε − E2
︸ ︷︷ ︸

≥0

+E2 − γ−1(fε)
︸ ︷︷ ︸

≥0

)
dx dv dt . (3.7)

Let us define the scaled flux and nonequilibrium part of the stress tensor,

jε :=
1

ε

∫

R3

vfε dv =

∫

R3

v
fε −Gfε

ε
dv and κε :=

∫

R3

v ⊗ v
fε −Gfε

ε
dv . (3.8)

Lemma 5 Let Assumptions 1-5 hold and let U ⊂ R
3 × [0, T ) be open and bounded. Then there are two

constants M1
U and M2

U , which do not depend on ε, such that

‖jε‖L2
x,t(U) ≤ M1

U and ‖κε‖L2
x,t(U) ≤ M2

U .

Proof. We have to verify that, for m ∈ {1, 2},
∫

U

(
∫

R3

|v|m |fε −Gfε |
ε

dv

)2

dx dt (3.9)

is bounded uniformly in ε. Depending on the function fε we split the domains of integration by making
use of the respective sets defined in (3.6):

∫

U

(
∫

R3

|vi|m
|fε −Gfε |

ε
dv

)2

dx dt

≤ 2

∫

U

(
∫

Ωx,t
+

|v|m |fε −Gfε |
ε

dv

)2

+

(
∫

Ωx,t
0

|v|m |fε −Gfε |
ε

dv

)2

dx dt . (3.10)

We then use Lemma 4 and (3.7) to estimate the first term:

∫

U

(
∫

Ωx,t
+

|v|m |fε −Gfε |
ε

dv

)2

dx dt

≤
∫

U

(
∫

Ωx,t
+

|v|2m Gfε − fε

γ−1(fε) − Efε

dv

)(

1

ε2

∫

Ωx,t
+

(Gfε − fε)(γ−1(fε) − Efε) dv

)

dx dt ≤ C1 . (3.11)

On Ω0 the local equilibrium satisfies Gfε = 0 by definition, and Ω0 is nonempty only if E2 <∞, implying
that suppf∗ and, thus, Ω0 is bounded in the velocity direction:

|v|2 ≤ 2(E2 + µ∗) for (x, v, t) ∈ Ω0 .

Hence we need to prove that

∫

U

(
∫

Ωx,t
0

|v|m |fε −Gfε |
ε

dv

)2

dx dt ≤ C

∫

U

(
∫

Ωx,t
0

fε

ε
dv

)2

dx dt (3.12)

is bounded uniformly in ε. Let us define

g(x, t) :=

∫

Ωx,t
0

(Ef − E2) f(x, v, t) dv ,

such that and 0 < g(x, t) and
∫

U
g dx dt = O(ε2) by (3.7) and, for some A > 0 that we will finally choose

large enough, let

UA :=
{
(x, t) ∈ U : g(x, t) < A

}
.
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We split again the domain of integration in (3.12) according to

∫

U

(
∫

Ωx,t
0

fε dv

)2

dx dt ≤
∫

UA

(
∫

Ωx,t
0

fε dv

)2

dx dt+

∫

U\UA

(
∫

Ωx,t
0

fε dv

)2

dx dt .

Let (x, t) ∈ UA and let R > 0 be some radius, for which will choose a specific value later on. We estimate

∫

Ωx,t
0

f dv ≤
∫

0<Ef−E2<R

‖f‖L∞ dv +
1

R

∫

Ωx,t
0

(Ef − E2) f dv . (3.13)

The volume of the set {v ∈ R
3 : 0 < Ef − E2 < R} is given by

φρf
(R) := meas

{

v ∈ R
3 : 0 < Ef − E2 < R

}

= meas

{

v ∈ R
3 :
√

2
(
E2 + µ̄(ρf )

)
< |v| <

√

2
(
R+ E2 + µ̄(ρf )

)
}

.

Observe that for fixed R > 0 ρ 7→ φρ(R) is a monotone function and conclude

φρf
(R) ≤ φµ̄−1(µ∗)(R) =

4π

3

(

2(E2 + µ∗)
)3/2

((

1 +
R

E2 + µ∗

)3/2

− 1

)

=: ψ(R) ,

where that function ψ(R) is given by ψ(R) = C1((1 + C2R)3/2 − 1) with constants C1 > 0 and C2 > 0
since E2 + µ∗ > 0. Otherwise the support of f∗ would indeed be empty.

From (3.13) we obtain
∫

Ωx,t
0

f dv ≤ C
ψ(R)

R
R+

1

R
g(x, t) = h(R) , (3.14)

for a positive constant C where the function h is given by

h(r) := C
ψ(R)

R
r +

1

r
g(x, t) .

This convex function assumes its minium at r̄ =
√

g(x,t)R
C ψ(R) . The minimal value is given

h (r̄) = 2

√

g(x, t)Ψ(R)C

R
. (3.15)

Now we choose R to be given by a solution of the equation

R = r̄ =

√

g(x, t)R

C ψ(R)
, (3.16)

which exists, since limR→0

√
g(x,t)R
C ψ(R) − R > 0 and limR→∞

√
g(x,t)R
C ψ(R) − R = −∞ for fixed g(x, t) > 0.

Observe that ψ(R)/R ≥ C1 C
3/2
2

√
R for any R > 0. Using this estimate in (3.16) yields

R5/4 ≤ C
√

g(x, t)

for a constant C > 0. From (3.14) and (3.15) and by using the assumption g(x, t) < A we infer

∫

Ωx,t
0

f dv ≤
√

g(x, t)Ψ(R)

R
≤ C

√

g(x, t)R
1
4 ≤ C

√

g(x, t) g(x, t)
1
10 ≤ C

√

g(x, t) ,

where C represents various positive constants.

In the case (x, t) ∈ U \ UA we estimate
∫

U\UA

(∫

Ωx,t
0

f dv
)

dx dt by choosing A larger than the bound

on ρ given by
(∫

Ωx,t
0

f dv
)2

≤ ρ(x, t)2 ≤ ‖ρ‖2
L∞ ≤ A ≤ g(x, t) .
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Finally by (3.7) we obtain

∫

U

(
∫

Ωx,t
0

fε dv

)2

dx dt ≤
∫

UA

Cg dx dt+

∫

U\UA

g dx dt

≤ C

∫

U

g dx dt = C

∫

U

(Ef − E2) f
ε(x, v, t) dx dt = O(ε2) .

Hence (3.12) is bounded uniformly in ε and by combining this with (3.11) and (3.10) we conclude
that this also applies to (3.9). The result follows now directly or, for the mixed second moments, by
application of the Cauchy-Schwarz inequality.

Before proving rigorously the macroscopic limit in Proposition 10, we will make preparatory statements
on second moments of local equilibria, the derivative of which will turn out to represent the diffusivity,
and on the strong convergence of the macroscopic density ρf .

Lemma 6 Let 0 ≤ ρ < ρmax = µ̄−1(µ∗) and denote by Id3×3 the identity matrix in R
3×3. Then the

second order moments of the local equilibrium gρ(v) := γ(|v|2/2 − µ̄(ρ)) are given by

∫

R3

v ⊗ v gρ dv = ν(ρ) Id3×3 where ν(ρ) :=

∫ ρ

0

σ µ̄′(σ) dσ .

Moreover, on the closed interval [0, ρmax], the derivative ν′ has either an upper bound or a strictly positive
lower bound.

Proof. Observe that ∫

R3

vivj gρ dv = 0 for any i, j = 1, 2, 3 i 6= j

and define

ν(ρ) :=

∫

R3

v2
1 γ dv =

∫

R3

v2
2 γ dv =

∫

R3

v2
3 γ dv .

Then by an integration by parts with respect to vi, we get

ν′(ρ) =

∫

R3

v2
i γ

′
(1

2
|v|2 − µ̄(ρ)

)

(−µ̄′(ρ)) dv = µ̄′(ρ)

∫

R3

−v2
i γ

′
(1

2
|v|2 − µ̄(ρ)

)

dv = ρ µ̄′(ρ) .

Now consider an interval [δ, ρmax] for some δ > 0. If µ̄′ does not behave ‘badly’ in this interval, the same
must be true for (µ̄−1)′(θ) on [µ̄(δ), µ̄(ρmax)]. As (1.9) can be written as

(µ̄−1)′(θ) = 2π
√

2

∫ ∞

0

γ(q − θ)√
q

dq

we infer for µ̄(δ) ≤ θ ≤ µ̄(ρmax)

0 <
1

m(δ)
:= (µ̄−1)′(µ̄(δ)) ≤ (µ̄−1)′(θ) ≤ (µ̄−1)′(µ̄(ρmax)) =:

1

M
<∞ .

Hence 0 ≤ M ≤ µ̄′(ρ) < m(δ) < ∞ where ρ ∈ [δ, ρmax]. Consequently also the product ρ µ̄′(ρ) is well
behaved in this sense and the values 0 and ∞ may only be approached as ρ→ 0.

As far as the behaviour at ρ = 0 is concerned we have to distinguish the case where E2 < ∞ and
the two cases (1.10) and (1.11) corresponding to energy profiles which are, compared to an exponential
decay, converging to zero not faster, or respectively, not slower. Let E2 <∞, then

lim
ρ→0

ν′(ρ) = lim
θ→−E2

µ̄−1(θ)

(µ̄−1)′(θ)
= lim

θ→−E2

∫ E2+θ

0 γ(p− θ)
√
p dp

1
2

∫ E2+θ

0
γ(p− θ) 1√

p dp

= lim
θ→−E2

∫ E2+θ

0 γ(p− θ) p√
p dp

1
2

∫ E2+θ

0 γ(p− θ) 1√
p dp

≤ lim
θ→−E2

(E2 + θ)
∫ E2+θ

0 γ(p− θ) 1√
p dp

1
2

∫ E2+θ

0 γ(p− θ) 1√
p dp

= 0 .
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In the case (1.10) we obtain

lim
ρ→0

ν′(ρ) = lim
θ→−∞

µ̄−1(θ)

(µ̄−1)′(θ)
= lim

θ→−∞

∫∞
0
γ(p− θ)

√
p dp

∫∞
0

−γ′(p− θ)
√
p dp

≥ lim
θ→−∞

∫∞
0
γ(p− θ)

√
p dp

1
τ

∫∞
0
γ(p− θ)

√
p dp

= τ .

In the case (1.11) we obtain by an analogous computation

lim
ρ→0

ν′(ρ) ≤ τ ,

which concludes the proof for all possible cases.

Proposition 7 Under Assumptions (1.14), (1.15) and (1.16) ρε → ρ0 in Lp
loc

strongly for all p ∈ (1,∞).

Proof. The proof relies on the Div-Curl Lemma in a similar way as in [15]. By integrating the kinetic
equation (1.1) with respect to dv and v dv respectively, we obtain the following system







∂tρ
ε + ∇x · jε = 0 ,

ε2 ∂tj
ε + ∇x ·

∫

R3

v ⊗ v fε dv = −jε − ρε∇xV .
(3.17)

Now we split the second moments of fε into an equilibrium part and a perturbation,
∫

R3

v ⊗ v fε dv =

∫

R3

v ⊗ v Gf
ε

dv +

∫

R3

v ⊗ v (fε −Gf
ε

) dv = ν(ρε) I3×3 + εκε ,

where we used the result of Lemma 6. We use this decomposition to rewrite the system (3.17) as a system
of four scalar equations.

{

∂tρ
ε + ∇x · jε = 0 ,

∇x ν(ρ
ε) = −jε − ρε∇xV − ε∇x · κε − ε2 ∂tj

ε .
(3.18)

We apply the Div-Curl Lemma to

Uε := (ρε, jε), V ε := (ν(ρε), 0, 0, 0) .

With these definitions and the convention (curlw)ij = wixj
− wjxi

(3.18) becomes

{

divt,xU
ε = 0 ,

(curlt,xV
ε)1,2...4 = −jε − ρε∇xV − ε∇x · κε − ε2 ∂tj

ε .

By assumption (1.16), Proposition 2 and Lemma 5, ρε∇xV and jε are bounded in L2,loc
x,t and therefore

precompact in H−1,loc
x,t . Also by Lemma 5, ε κε and ε2 jε are compact in L2,loc

x,t and their derivatives are

therefore compact in H−1,loc
x,t .

Due to Proposition 2, the family ρε is weakly * compact in L∞,loc
x,t and hence weakly compact in L2,loc

x,t .
The same applies to ν(ρε) and ρν(ρε) as ν is a continuous function. Let (εi)i∈N be a sequence converging

to 0 such that ρεi and ν(ρεi ) weakly converge in L2,loc
x,t and ρεiν(ρεi) converges weak * in L∞,loc

x,t and
consider the corresponding limits for Uεi and V εi :

Uεi ⇀ (ρ, j) and V εi ⇀ (ν, 0, 0, 0) in L2,loc
x,t as i→ ∞ .

The Div-Curl Lemma (see [9]) states the following:
Let U ⊆ R

m be an open, bounded and smooth set and let (vk)k∈N and (wk)k∈N be two bounded sequences
in L2(U, R

n), such that the sequences (div vk)k∈N and (curlwk)k∈N lie in compact subsets of H−1(U) and
H−1(U, R

n×n) respectively. Then the sequence of scalar products (vk · wk)k∈N converges to v · w in the
sense of distributions, where v and w are the weak limits in L2(U, R

n) of (vk)k∈N and (wk)k∈N.
Due to the considerations above we obtain from the application of the Div-Curl Lemma that Uεi ·V εi =

ρεiν(ρεi ) → ρ ν in the sense of distributions. By uniqueness of the limit in D′
x,t and the weak * limit in

L∞,loc
x,t we get

ρεiν(ρεi)
∗
⇀ ρ ν in L∞,loc

x,t as i→ ∞ . (3.19)

From this identity we shall conclude, in a similar way as in [17], that the convergence of ρεi is strong.
In [17] the proof of strong convergence relies on strict convexity to proof the strong convergence. We
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will instead make use of the strict monotonicity of the function ν, which replaces, in this respect, strict
convexity.

We associate the Young measure family ηx,t to the weak * convergence of ρεi in L∞,loc
x,t and obtain







ν(ρεi)
∗
⇀ ν =

∫ ρmax

0

ν(ρ) dηx,t(ρ) ,

ρεi
∗
⇀ ρ =

∫ ρmax

0

ρ dηx,t(ρ) ,

ρεi ν(ρεi)
∗
⇀

∫ ρmax

0

ρ ν(ρ) dηx,t(ρ) = ρ ν ,

(3.20)

where the final identity is due to (3.19). Now observe that

ν(ρ) = ν(ρ) + ν′(ρ̃)(ρ− ρ)

for some ρ̃ ∈ (0, ρmax). From this and (3.20) we conclude

0 =

∫ ρmax

0

ν(ρ)(ρ− ρ) dηx,t(ρ) =

∫ ρmax

0

ν(ρ)(ρ− ρ) dηx,t(ρ)

︸ ︷︷ ︸

=0

+

∫ ρmax

0

ν′(ρ̃)(ρ− ρ)2 dηx,t(ρ) ≥ C

∫ ρmax

0

(ρ− ρ)2 dηx,t(ρ) .

Here we relied on the second alternative in Lemma 6, which states that ν′(ρ) assumes its minimum C > 0
on [0, ρmax]. The measure ηx,t is therefore the Dirac point mass δ(ρ− ρ), which means that the sequence
ρεi strongly converges.

In the alternative case, in which ν′(ρ) is bounded from above on [0, ρmax] ∋ ρ, we have to go back
to (3.20). Observe that (ν−1)′(p) = 1/ν′(ν−1(p)) will be bounded from below on the interval [0, ν(ρmax)]
and define πεi := ν(ρεi). By rewriting (3.20) we infer







πεi
∗
⇀ ν =

∫ ν(ρmax)

0

π dµx,t(π) ,

ν−1(πεi)
∗
⇀ ρ =

∫ ν(ρmax)

0

ν−1(π) dµx,t(π) ,

ν−1(πεi)πεi
∗
⇀

∫ ν(ρmax)

0

π ν−1(π) dµx,t(π) = ρ ν ,

where µx,t is the Young measure associated to the weak convergence of (πεi )i.
In the same way as above for the measure ηx,t, we conclude that µx,t is a point mass. Therefore (ν(ρεi ))i

strongly converges and by continuity of ν−1 this also applies to (ρεi)i. Since the limit is independent of
(εi)i∈N, the convergence holds as ε→ 0.

As in Section 1, we denote by Gf the local Gibbs state associated to f : Gf (x, v, t) = γ(|v|2/2 −
µ̄(ρf (x, t))).

Lemma 8 Let fε be the solution of (1.1) and denote by f0 its weak limit as ε→ 0. Under the assumptions
of Proposition 7, f0 = Gf0 .

Proof. First we show that the differences fε −Gfε , up to the extraction of a subsequence, converge to
zero a.e.: The relation (3.2) implies that a.e. at least one of the two factors in (γ(Efε)−fε)(γ−1(fε)−Efε

)

converges to zero as ε→ 0.
If the first factor converges to zero, then the result holds. Consider therefore the pointwise convergence

at a point in phase space where the second factor converges but not the first one. Observe that γ−1(fε)−
Efε → 0 implies γ−1(fε) − min(Efε , E2) → 0 because γ−1(g) < E2 for all g > 0. As the energy profile γ
is a diffeomorphism on (E1, E2), we obtain

−(γ−1)′(f̄ε)(γ(min(Efε , E2)) − fε) → 0

for some mean value f̄ε. Remember that γ′ is bounded on compact subintervals of (E1, E2) and that
we evaluate at a point where |γ(Efε) − fε| ≥ δ1 for some δ1 > 0 as ε → 0. Hence the mean value
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f̄ε ∈ (min(γ(Efε), fε),max(γ(Efε), fε)) stays strictly away from zero, f̄ε > δ2 as ε → 0 and therefore
−(γ−1)′(f̄ε) has a strictly positive lower bound. This yields

fε − γ(min(Efε , E2)) = fε − γ(Efε) = fε −Gfε → 0 .

Summarizing we obtain fε − Gfε → 0 a.e. This together with Proposition 7 and the continuity of the
mapping r → γ(|v|2/2 − µ̄(r)) implies the result.

Lemma 9 Let jε be the perturbation of the first moment as defined in (3.8). Then jε converges to j0 in
D′
x,t, where the limit j0 is given by

j0 = −∇x ν(ρ
0) − ρ0 ∇xV .

Proof. We define

rε :=
1

ε

(

fε − γ
(1

2
|v|2 − µ̄(ρε)

))

.

After multiplication by ε−1, the left hand side of (1.1) weakly converges to

v · ∇xf
0 −∇xV · ∇vf

0 = v · ∇xGf0 −∇xV · ∇vGf0 ,

where we used Lemma 8. As the right hand side of (1.1) can be written as −ε rε, we infer that rε weakly
converges to

r0 =
(

∇xV · ∇vGf0 − v · ∇xGf0

)

.

Now observe that ∫

R3

v r0 dv = −
(

ρ0 ∇xV + ∇x ν(ρ
0)
)

= j0 .

To prove the convergence jε → j0 in D′
x,t, let φ ∈ Dx,t. For R > 0, we choose ψR ∈ C∞

c (R3
v) with

0 ≤ ψ ≤ 1, ψ ≡ 1 on BR(0) and supp ψR ⊂ BR+1(0) and obtain

lim
ε→0

∫

R4

φ (jε − j0) dx dt = lim
ε→0

∫∫∫

R7

φ v (rε − r0) dv dx dt

≤ lim
R→∞

lim
ε→0

( ∣
∣
∣
∣

∫∫∫

R7

φψR(v)v(rε − r0) dv dx dt

∣
∣
∣
∣

+
3

R

∫∫∫

R7

(1 − ψR(v))|φ| |v|2 |rε| dv dx dt+
∣
∣
∣
∣

∫∫∫

R7

φ (1 − ψR(v)) v r0 dv dx dt

∣
∣
∣
∣

)

= lim
R→∞

(

0 +
3

R

√

meas(suppφ) M2
suppφ +

∣
∣
∣
∣

∫∫∫

R7

φ (1 − ψR(v)) v r0 dv dx dt

∣
∣
∣
∣

)

= 0 ,

where we used the convergence rε → r0 in Dx,v,t, the uniform boundedness of κε by Lemma 5 together
with an interpolation and the convergence of the last integral.

Proposition 10 Let fε be the solution of (1.1) and denote by f0 its weak limit as ε → 0. Under the
assumptions of Proposition 7, ρ0 :=

∫

R3 f
0 dv satisfies (1.6), (1.8) in the weak sense.

Proof. By integration of (1.1) in the velocity space and by observing
∫

R3 v γ(|v|2/2 + V − µρf
) dv = 0

we obtain the macroscopic continuity equation

∂tρ
ε + ∇x · jε = 0 ,

with the perturbation of the flux jε as defined in (3.8). We multiply this equation by a test function
φ(x, t) ∈ D(R4), integrate and obtain after integration by parts

∫ ∞

0

∫

R3

ρε∂tφ+ ∇xφ · jε dx dt = −
∫

R3

φ(0, x) ρI(x) dx .

By Proposition 7 and Lemma 9 we can find a sequence (εj)j∈N and pass to the limit as εj → 0 in the
above identity. We obtain

∫ ∞

0

∫

R3

[

ρ0 ∂tφ− ρ0 ∇xV · ∇xφ+ ν(ρ0)∆xφ
]

dx dt = −
∫

R3

φ(0, x) ρI(x) dx ,

which is a weak formulation of (1.6), (1.8).
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4. Examples

Example 1 Consider the case of a power law with negative exponent, γ(E) := DE−k, with D > 0 and
k > 5/2. Then Assumptions 1 and 2 are obviously satisfied with E1 = 0 and E2 = ∞. We easily compute

µ̄(ρ) = −
( ρ

Dβ(k)

) 1
3/2−k

, where β(k) := 4π
√

2

∫ ∞

0

√
s

(s+ 1)k
ds .

Substituting this expression in (1.6) yields

∂tρ = ∇ ·
(

Θ∇(ρ
k−5/2

k−3/2 ) + ρ∇V
)

, where Θ :=
1

k − 5/2
(Dβ(k))

1

k−3/2 .

Since 0 < k−5/2
k−3/2 < 1 this is a fast diffusion equation. The confinement condition (1.17) in Assumption 4

is satisfied if, outside of a finite ball, the potential grows faster than a certain power:

V (x) ≥ C|x|q, for |x| > R , with q >
3

k − 5/2
.

The same threshold was obtained in [6] (HV 6, remark 16, e) in order to guarantee there that the entropy
is finite.

Example 2 For the Maxwellian distribution, γ(E) = exp(−E), we compute

µ̄(ρ) = log ρ− 3

2
log(2π) .

and, thus, the linear drift-diffusion equation

∂tρ = ∇ ·
(
∇ρ+ ρ∇V

)
.

By making use of (3.4) we conclude that the growth assumption on the potential in (1.17) is satisfied if

V (x) ≥ q log(|x|), for |x| > R , with q > 3 .

Example 3 Let γ be a cut-off power with positive exponent:

γ(E) = (E2 − E)k+ ,

with D, k > 0. We obtain

µ̄(ρ) =

(
ρ

Dα(k)

) 1

k+3/2

− E2 , where α(k) = 4π
√

2

∫ 1

0

√
u(1 − u)k du .

and, thus, the porous medium type macroscopic equations

∂tρ = ∇ ·
(

Θ∇
(

ρ
k+5/2

k+3/2

)

+ ρ∇V
)

, where Θ :=
1

k + 5/2
(Dα(k))

−1

k+3/2 ,

with the exponent satisfying

1 <
k + 5/2

k + 3/2
<

5

3
.

The confinement assumption in (1.17) is satisfied if

(
E2 + µ∗ − V (x)

)

+
= O(|x|−q) as |x| → ∞, with q >

3

k + 3/2
,

where µ∗ is the upper bound for the Fermi energy in assumption (1.15). This assumption is satisfied if
V ≥ E2 + µ∗ outside of a compact set. In this situation, our results guarantee that the supports of both
the kinetic as well as of the macroscopic solutions remain in fixed compact sets for all times. At the
macroscopic level, this behaviour of the porous medium equation is well known.
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In the following two examples, we will use the polylogarithmic function

Lin(z) :=

∞∑

k=1

zk

kn
,

which satisfies, for σ = ±1,
∫ ∞

0

ks dk

exp(k − ν) − σ
= σΓ (s+ 1)Li1+s(σ exp(ν)) and

d

dz
Lin(z) =

1

z
Lin−1(z) .

Example 4 Let γ be the energy profile of the Fermi-Dirac distribution, γ(E) = 1
exp(E)+α . We obtain

(µ̄−1)(θ) =
4π

√
2

α

∫ ∞

0

√
p dp

exp(p− θ − logα) + 1
= − (2π)3/2

α
Li3/2

(
−αeθ

)
,

and therefore

µ̄(ρ) = log

(
−
(
Li−1

3/2

)( −αρ
(2π)3/2

)

α

)

.

As macroscopic equation we obtain

∂tρ = ∇ ·
(

(D(ρ)∇ρ+ ρ∇V )
)

,

where, by Lemma 6, the diffusivity D(ρ) is given by

D(ρ) = ν′(ρ) = ρ µ̄′(ρ) =
−α

(2π)3/2
ρ

Li1/2
(
(Li−1

3/2)(
−αρ

(2π)3/2 )
) .

Moreover the expansion of D(ρ) at ρ = 0 gives

D(ρ) = 1 +

√
2

4

αρ

(2π)3/2
+

(
3

8
− 2

√
3

9

)
α2ρ2

(2π)3
+O(ρ3) .

Example 5 Let γ be the energy profile of the Bose-Einstein distribution, γ(E) = 1
exp(E)−α . It satisfies

Assumptions 1-3 with E1 = log(α), E2 = ∞. We obtain

(µ̄−1)(θ) =
4π

√
2

α

∫ ∞

0

√
p dp

exp(p− θ − logα) − 1
=

(2π)3/2

α
Li3/2

(
αeθ
)
,

and therefore

µ̄(ρ) = log

((
Li−1

3/2

)(
αρ

(2π)3/2

)

α

)

.

As macroscopic equation we obtain

∂tρ = ∇ ·
(

(D(ρ)∇ρ+ ρ∇V )
)

,

where the diffusivity D(ρ) is given by

D(ρ) = ν′(ρ) = ρµ̄′(ρ) =
α

(2π)3/2
ρ

Li1/2
(
(Li−1

3/2)(
αρ

(2π)3/2 )
) .

The maximal density ρ̄ as defined in (1.13) is finite in the case of the Bose-Einstein distribution and
given by

ρ =
(2π)3/2ζ(3/2)

α
≈ 41.144 . . .

α
.

with the Riemann Zeta function given by ζ(s) := Lis(1) =
∑∞
k=1

1
ks . Observe that limρ→ρ ν

′(ρ) = 0 and
limρ→0 ν

′(ρ) = 1.
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