Cohomologie de Chevalley des graphes vectoriels - Archive ouverte HAL
Article Dans Une Revue Pacific Journal of Mathematics Année : 2007

Cohomologie de Chevalley des graphes vectoriels

Résumé

The space of smotth functions and vector fields on $\R^d$ is a Lie subalgebra of the (graded) Lie algebra $T_{poly}(\R^d)$, equipped with the Scouten bracket. In this paper, we compute the cohomology of this subalgebra for the adjoint representation in $T_{poly}(\R^d)$, restricting ourselves to the case of cochains defined with purely aerial Kontsevich's graphs, as in [AGM]. We find results which are very similar to the classical Gelfand-Fuchs and de Wilde-Lecomte one.
Fichier principal
Vignette du fichier
AAC.pdf (247.65 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00005791 , version 1 (04-07-2005)

Identifiants

Citer

Walid Aloulou, Didier Arnal, Ridha Chatbouri. Cohomologie de Chevalley des graphes vectoriels. Pacific Journal of Mathematics, 2007, 229 (2), pp.257-292. ⟨hal-00005791⟩
154 Consultations
317 Téléchargements

Altmetric

Partager

More