L-type estimators of the fractal dimension of locally self-similar Gaussian processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2005

L-type estimators of the fractal dimension of locally self-similar Gaussian processes

Résumé

This paper is devoted to the introduction of a new class of consistent estimators of the fractal dimension of locally self-similar Gaussian processes. These estimators are based on linear combinations of empirical quantiles (L-statistics) of discrete variations of a sample path over a discrete grid of the interval [0,1]. We derive the almost sure convergence for these estimators and prove the asymptotic normality. The key-ingredient is a Bahadur representation for empirical quantiles of non-linear functions of Gaussians sequences with correlation function decreasing hyperbollically.
Fichier principal
Vignette du fichier
robustHurstHAL.pdf (597.45 Ko) Télécharger le fichier

Dates et versions

hal-00005371 , version 1 (15-06-2005)
hal-00005371 , version 2 (08-02-2007)

Identifiants

Citer

Jean-François Coeurjolly. L-type estimators of the fractal dimension of locally self-similar Gaussian processes. 2005. ⟨hal-00005371v1⟩
93 Consultations
217 Téléchargements

Altmetric

Partager

More