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L-type estimators of the fractal dimension of

locally self-similar Gaussian processes

By Jean-François Coeurjolly1

University of Grenoble 2, France

This paper is devoted to the introduction of a new class of consistent esti-

mators of the fractal dimension of locally self-similar Gaussian processes.

These estimators are based on linear combinations of empirical quantiles

(L−statistics) of discrete variations of a sample path over a discrete grid

of the interval [0, 1]. We derive the almost sure convergence for these

estimators and prove the asymptotic normality. The key-ingredient is

a Bahadur representation for empirical quantiles of non-linear functions

of Gaussians sequences with correlation function decreasing hyperbolli-

cally.

1 Introduction

Many naturally occuring phenomena can be effectively modelled using self-similar

processes. Among the simplest models, one can consider the fractional Brown-

ian motion introduced in the statistics community by Mandelbrot et al. (1968).

Fractional Brownian motion can be defined as the only centered Gaussian process

denoted by (X(t))t∈R, with stationary increments and with variance function, v(·)
1Supported by a grant from IMAG Project AMOA.
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2 J.-F. Coeurjolly

defined by v(t) = σ2|t|2H for all t ∈ R. This process exhibits remarkable properties.

Is is a H-self-similar process, that is for all c > 0

{X(ct)}t∈R

d
= cH {X(t)}t∈R

,

where
d
= means equal in finite-dimensional distributions. Autocovariance function

of the fractional Brownian motion behaves like O(|k|2H−2) as |k| → +∞, so that

the discretized increments of fractional Brownian motion (called fractional Gaus-

sian noise) constitutes a short-range dependent process, when H < 1/2, and a

long-range dependent process, when H > 1/2. The index H characterizes also

the path regularity since the fractal dimension of fractional Brownian motion is

equal to D = 2 − H . In this paper, we focus on a class of processes that extend

the notion of self-similarity. We consider Gaussian processes (X(t))t∈R, centered,

with stationary increments and such that the variance function, denoted by v(·),
satisfies

v(t) = E(X(t)2) = σ2|t|2H (1 + r(t)) , with r(t) = o(1) as |t| → 0, (1)

for some 0 < H < 1. Such processes are called locally self-similar (at zero)

Gaussian processes. An interesting property is that their fractal dimension remains

D = 2 − H , e.g. Constantine and Hall (1994).

This paper deals with estimators of the parameter H (and so on the fractal

dimension). According to the context, a very large variety of estimators has been

investigated. We refer the reader to Beran (1994), Coeurjolly (2000) or Bardet et

al. (2003) for an overview of this problem. Among the most often used estimators

we have: methods based on the variogram, on the log−periodogram e.g. Geweke

and Porter-Hudak (1983) in the context of long-range dependent processes, maxi-

mum likelihood estimator (and Whittle estimator) when the model is parametric

e.g. fractional Gaussian motion. In the precise context of locally self-similar

Gaussian processes, let us cite methods based on the wavelet decomposition e.g.

Flandrin (1992) or Stoev et al. (2004) and the references therein, and on discrete

filtering studied by Kent and Wood (1997), Istas and Lang (1997) and Coeurjolly

(2001). These two last ones rely on a specific filtering that is designed to destroy
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the correlation structure of observations. More precisely for wavelet method (for

example), the procedure is based, at each scale, on the estimation of the mean

of the squared coefficient by empirical moment of order 2. Stoev et al. (2004)

illustrate the fact that estimators derived from these procedures, are very sensi-

tive to additive outliers and to non-stationary artefacts. Therefore, they propose

to replace at each scale, the empirical moment of order 2, by the empirical me-

dian of the squared coefficients. This procedure for which authors assert that no

theoretical result is available, is clearly more robust.

The main objective of this paper is to extend the procedure proposed by Stoev

et al. (2004) by deriving semi-parametric estimators of the parameter H , using

discrete filtering methods, for the class of processes defined by (1) and to pro-

vide convergence results. To derive convergence results of developped estimators,

key-ingredient is a Bahadur representation of empirical quantiles in a certain de-

pendence framework. Let Y = (Y1, . . . , Yn) a vector of n i.i.d. random variables

with cumulative distribution function F . A Bahadur representation of sample

quantiles consists in the following result: assuming F ′′ exists and is bounded in

a neighborhood of ξ(p), quantile of order p, for some 0 < p < 1, we have almost

surely, as n → +∞
ξ̂ (p) − ξ(p) =

p − F̂ (p)

f(ξ(p)
+ rn,

with rn = O
(
n−3/4 log(n)1/2 log(n)1/4

)
. This result proved by Bahadur (1966),

was improved by Kiefer (1967) that obtained the rate rn = O
(
n−3/4 log log(n)3/4

)
.

Note that, assuming only that F ′ exists and is bounded in a neghborhood of ξ(p),

it can be proved e.g. Serfling (1980), that rn = O
(
n−3/4 log(n)3/4

)
. Extensions

of above results to dependent random variables have been pursued in Sen (1972)

for φ−mixing variables, in Yoshihara (1995) for strongly mixing variables, and

recently in Wu (2005) for short-range and long-range dependent linear processes,

following works of Hesse (1990) and Ho and Hsing (1996). Our contribution is to

provide a Bahadur representation for sample quantiles in another context that is

for non-linear functions of Gaussian processes with correlation function decreas-

ing hyperbollically. The bounds for rn are obtained under a minimal assumption

which is similar to the one done in Serfling (1980).
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The paper is organized as follows. In Section 2, we give some basic notation

and some background on discrete filtering. In Section 3, we derive semi-parametric

estimators of the parameter H , when observing a unique sample path of a process

defined by (1) over a discrete grid of the interval [0, 1] that we denote by X.

Estimators are based on linear combinations of empirical quantiles of g(Xa) which

is a function of the series X filtered with a, that is

ξ̂n(p, c, g(Xa)) =

K∑

k=1

ckξ̂n(pk, g(Xa)).

Two functions are considered g(·) = |·|α for some α > 0 and g(·) = log |·|, leading to

two different estimators of H . Section 4 presents main results. We first establish a

Bahadur representation of empirical quantiles for non-linear functions of Gaussian

sequences. We apply this result to control almost surely our estimators, and to

obtain, under certain conditions the asymptotic normality with rate 1/
√

n, for all

0 < H < 1. In Section 5 are proposed some numerical computations to compare

theoretically asymptotic variances of our estimators and a simulation study. In

particular, we illustrate the relative efficiency with respect to Whittle estimator

and the fact that such estimators are more robust than classical ones. Finally,

proofs of differents results are presented in Section 6.

2 Some notation and some background on dis-

crete filtering

Given some random variable Y , let us denote by FY (·) its cumulative distribution

function, by ξY (p) for some 0 < p < 1 its theoretical quantile of order p. If

FY (·) is aboslutely continuous with respect to Lebesgue measure, the probability

distribution function is denoted by fY (·). The cumulative (resp. probability)

distribution function of a standard Gaussian variable is denoted by Φ(·) (resp.

φ(·)). Based on the observation of a vector Y = (Y (1), . . . , Y (n)) of n random

variables distributed as Y , the empirical cumulative distribution function and the
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empirical quantile of order p are respectively denoted by F̂Y (·; Y ) and ξ̂Y (p; Y )

or more easily by F̂ (·; Y ) and ξ̂ (p; Y ). Finally, for some measurable function

g(·), we denote by g(Y ) the vector of length n with real components g(Y (i)), for

i = 1, . . . , n.

Statistical model corresponds to a discretized version X = (X(i/n))i=1,...,n

of a locally self-similar Gaussian process defined by (1). Let us now give some

background discrete filtering. We denote by a a filter of length ℓ + 1 and of order

ν ≥ 1, that is a vector of length ℓ + 1 with real components such that:

ℓ∑

q=0

qjaq = 0, for j = 0, . . . , ν − 1 and
ℓ∑

q=0

qνaq 6= 0.

For example, a = (1,−1) (resp. a = (1,−2, 1)) is a filter with order 1 (resp. 2).

Let Xa be the series obtained by filtering X with a, that is:

Xa

(
i

n

)
=

ℓ∑

q=0

aqX

(
i − q

n

)
for i ≥ ℓ + 1.

The following assumption is needed by different results presented hereafter:

Assumption A1(k) : for some integer k ≥ 1, we have for i = 1, . . . , k

v(i)(t) = σ2β(i)|t|2H−i + o(|t|2H−i)

with β(i) = 2H(2H − 1) . . . (2H − i + 1).

This assumption means that the variance function v(·) has to be sufficiently

differentiable. In particular, Assumption A1(k) is satisfied (for every k ≥ 1)

for processes with variance function v(t) = |t|2H , v(t) = 1− exp(−|t|2H) or v(t) =

log(1+|t|2H). The following Lemma asserts the change of the dependence structure

when applying discrete filtering.

Lemma 2.1 (e.g. Kent and Wood (1997)) Let a and a′ be two filters of length

ℓ + 1 and ℓ′ + 1 and of order ν and ν ′ ≥ 1. Then we have:

E

(
Xa

(
i

n

)
Xa′

(
i + j

n

))
=

−σ2

2

ℓ∑

q,q′=0

aqa
′
q′v

(
q − q′ + j

n

)

= γa,a′

n (j)
(
1 + δa,a′

n (j)
)

(2)
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with

γa,a′

n (j) =
σ2

n2H
γa,a′

(j), γa,a′

(j) = −1

2

ℓ∑

q,q′=0

aqa
′
q′ |q − q′ + j|2H , (3)

and

δa,a′

n (j) =

∑
q,q′ aqaq′ |q − q′ + j|2H × r

(
q−q′+j

n

)

γa,a′(j)
. (4)

Moreover, we have as |j| → +∞

γa,a′

(j) = O
(

1

|j|2H−ν−ν′

)
. (5)

Finally, under Assumption A1(ν + ν ′), we have, as n → +∞

δa,a′

n (j) = o(1). (6)

Define Y a the vector Xa normalized with variance 1. The covariance between

Y a(i/n) and Y a′

(i + j/n) is denoted by ρa,a′

n (j). Under Assumption A1(ν + ν ′),

we have the following equivalence, as n → +∞

ρa,a′

n (j) ∼ ρa,a′

(j) =
γa,a′

(j)√
γa,a(0)γa′,a′(0)

(7)

When a = a′, we put, for the sake of simplicity γa
n(·) = γa,a

n (·), δa
n(·) = δa,a

n (·)
and ρa

n(·) = ρa,a
n (·) (idem for γa(·) and ρa(·)).

3 L-type estimators of H

Let (p, c) = (pk, ck)k=1,...,K ∈ ((0, 1) × R
+)K for an integer K ≥ 1. Define the fol-

lowing statistics based on linear combinations of emprical quantiles (L-statistics):

ξ̂ (p, c; Xa) =
K∑

k=1

ck ξ̂ (pk; X
a) , (8)

where ck, k = 1, . . . , K are real numbers such that
∑K

k=1 ck = 1. For example, this

corresponds to the empirical median when K = 1, p = 1/2, c = 1 , to a mean of
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quartiles when K = 2, p = c(1/4, 3/4), c = (1/2, 1/2) , and to the β trimmed-mean

(for 0 < β < 1) when K = [(1−β)n] and pk = β+k/n, ck = 1/K for k = 1, . . . , K.

Consider the following computation: from Lemma 2.1, we have, as n → +∞

ξ̂ (p, c; Xa) ∼ σ2

n2H
γa(0)ξ̂ (p, c; Y a) .

If the observations are sufficiently decorrelated, we can hope that ξ̂ (p, c; Y a) con-

verges towards a constant, as n → +∞. In itself, this result is not interesting,

since two parameters remain unknown: σ2 and H and thus, it is impossible to

derive an estimator of H . This obvious remark suggests that we have to use at

least two filters. Among all available filters, let us consider the sequence (am)m≥1

defined by

am
i =





aj if i = jm

0 otherwise
for i = 0, . . . , mℓ ,

which is nothing else that the filter a dilated m times. For example, if the fil-

ter a = a1 corresponds to the filter (1,−2, 1), then a2 = (1, 0,−2, 0, 1), a3 =

(1, 0, 0,−2, 0, 0, 1), . . . As noted by Kent and Wood (1997) or Istas and Lang (1997),

the filter am, of length mℓ+1, is of order ν and has the following interesting prop-

erty :

γam

(0) = m2Hγa(0). (9)

Our methods, that exploit the nice property (9), are based on linear combinations

of empirical quantiles ξ̂
(
p, c; g(Xam

)
)

for two positive functions g(·): g(·) = | · |α
for α > 0 and g(·) = log | · |. The choice of positive function ensures that the

statistics ξ̂
(
p, c; g(Xam

)
)

is strictly positive, which is important for the estimation

procedure described hereafter. From (3) and (9), we have

ξ̂
(
p, c; |Xam

|α
)

= E
(
(Xam

(1/n))2
)α/2

ξ̂
(
p, c; |Y am

|α
)

= mαH σα

nαH
γa(0)α/2

(
1 + δam

n (0)
)α/2

ξ̂
(
p, c; |Y am

|α
)
, (10)

and

ξ̂
(
p, c; log |Xam

|
)

=
1

2
log E(Xam

(1/n))2 + ξ̂
(
p, c; log |Y am

|
)
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= H log(m) + log

(
σ2

n2H
γa(0)

)

+
1

2
log
(
1 + δam

n (0)
)

+ ξ̂
(
p, c; log |Y am

|
)
. (11)

Denote by κH = n−2Hσ2γa(0) and by Y , a standard Gaussian variable. Equations

(10) and (11) can be rewritten as

log ξ̂
(
p, c; |Xam

|α
)

= αH log(m) + log
(
κ

α/2
H ξ|Y |α (p, c)

)
+ εα

m (12)

ξ̂
(
p, c; log |Xam

|
)

= H log(m) + log(κH) + εlog
m (13)

where the random variables εα
m and εlog

m are respectively defined by

εα
m = log

(
ξ̂
(
p, c; |Y am

|α
)

ξ|Y |α (p, c)

)
+

α

2
log
(
1 + δam

n (0)
)

(14)

and

εlog
m = ξ̂

(
p, c; log |Y am

|
)
− ξlog |Y | (p, c) +

1

2
log
(
1 + δam

n (0)
)

(15)

where, for some random variable Z

ξZ (p, c) =
K∑

k=1

ck ξZ(pk).

From (12) and (13), two estimators can be defined through a simple regression of

( log ξ̂
(
p, c; |Xam

|α
)
)m=1,...,M and (ξ̂

(
p, c; log |Xam

|
)
)m=1,...,M on ( log m)m=1,...,M

for some M ≥ 2. These estimators are denoted respectively by Ĥα and Ĥ log. By

denoting A the vector of length M with components Am = log m− 1
M

∑M
m=1 log(m),

m = 1, . . . , M , we have explicitly:

Ĥα =
AT

α||A||2
(
log ξ̂

(
p, c; |Xam

|α
))

m=1,...,M
, (16)

Ĥ log =
AT

||A||2
(
ξ̂
(
p, c; log |Xam

|
))

m=1,...,M
. (17)

We can point out that both estimators are independent of the scaling coefficient σ2.

To simplify presentation of different results, consider the following assumption

on different parameters involved in the estimation procedure

Assumption A2 : a is a filter of order ν ≥ 1, α is a real strictly positive, p (resp.

c) is a vector of length K (for some K ≥ 1) such that 0 < pk < 1 (resp. ck > 0

and
∑K

k=1 ck = 1), M is an integer ≥ 2.
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4 Main results

From previous notation, to study the convergence of Ĥα
n and Ĥ log

n , we will use the

fact that

Ĥα − H =
AT

α||A||2 εα and Ĥ log − H =
AT

||A||2 εlog. (18)

where εα = (εα
m)m=1,...,M and εlog = (εlog

m )m=1,...,M . Thus, it is sufficient to obtain

some convergence results of empirical quantiles ξ̂n(p, g(Y a)) for some function g(·)
and some filter a. Therefore, we first establish a Bahadur representation of em-

pirical quantiles for some Gaussian sequences with correlation function decreasing

hyperbollically.

4.1 Bahadur representation of empirical quantiles

Let us recall some important definitions on Hermite polynomials. The j-th Hermite

polynomial (for j ≥ 0) is defined for t ∈ R by

Hj(t) =
(−1)j

φ(t)

djφ(t)

dtj
, (19)

For example, the first polynomials are H0(t) = 1, H1(t) = t, H2(t) = t2−1, H3(t) =

t3 − 3t, . . . The Hermite polynomials form an orthogonal system for the Gaussian

measure. More precisely, by denoting Y a standard Gaussian variable, we have

E (Hj(Y )Hk(Y )) = j! δj,k. For some measurable function f(·) defined on R such

that E(f(Y )2) < +∞, that is f ∈ L2(dφ), we have the following expansion

f(t) =
∑

j≥τ

cj

j!
Hj(t) with cj = E (f(Y )Hj(Y )) .

The integer τ defined by τ = inf {j ≥ 0, cj 6= 0}, is called the Hermite rank of the

function f . We also have

E(f(Y )2) =
∑

j≥τ

(cj)
2

j!
.

Let us now describe assumption under which we obtain a Bahadur representa-

tion of ξ̂ (p; g(Y )).
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Assumption A3(ξ(p)) : there exists Ui, i = 1, . . . , L, disjoint open sets such

that Ui contains a solution to the equation g(t) = ξg(Y )(p) and such that g is a

C1−diffeomorphism on ∪L
i=1Ui.

Previous assumption asserts that F ′
g(Y )(·) exists and is bounded in a neighborhood

of ξg(Y )(p). More precisely, in ξg(Y )(p) we have

F ′
g(Y )(ξg(Y )(p)) = fg(Y )(ξg(Y )(p)) =

L∑

i=1

φ(g−1
i (t))

g′(g−1
i (t))

,

where gi(·) is the restriction of g(·) on Ui. Note that, Assumption A3(ξ(p)) is the

minimal hypothesis under which, in the i.i.d. case, a Bahadur representation can

be obtained, see e.g. Serfling (1980).

Now, define, for some real u, the function hu(·) by:

hu(t) = 1{g(t)≤u}(t) − Fg(Y )(u). (20)

We denote by τ(u) the Hermite rank of hu(·). For the sake of simplicity, we

put τp = τ(ξg(Y )(p)). For some function g(·) satisfying Assumption A3(ξ(p)), we

denote by

τp = inf
γ∈∪L

i=1g(Ui)
τ(γ), (21)

that is the minimal Hermite rank of hu(·) for u in a neighborhood of ξg(Y )(p).

Theorem 4.1 Let {Y (i)}+∞
i=1 be a stationary (centered) gaussian process with vari-

ance 1, and correlation function ρ(·) such that, as i → +∞

|ρ(i)| ∼ L(i) i−α (22)

for some α > 0 and some slowly varying function at infinity L(s), s ≥ 0. Then,

under Assumption A3(ξ(p)), we have almost surely, as n → +∞

ξ̂ (p; g(Y )) − ξg(Y )(p) =
p − F̂

(
ξg(Y )(p); g(Y )

)

fg(Y )(ξg(Y )(p))
+ O (rn(α, τp)) , (23)

where the sequence (rn(α, τp))n≥1 is defined by
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rn(α, τp) =





n−3/4 log(n)3/4 if ατ p > 1,

n−3/4 log(n)3/4Lτp
(n)3/4 if ατ p = 1,

n−1/2−ατp/4 log(n)τp/4+1/2L(n)τp/4 if 2/3 < ατp < 1,

n−ατp log(n)τpL(n)τp if 0 < ατ p ≤ 2/3,

(24)

where for some τ ≥ 1, Lτ (n) =
∑

|i|≤n |ρ(i)|τ .

Note that if L(·) is an increasing function, Lτ (n) = O( log(n)L(n)τ ).

Remark 4.1 Without giving any detail here, let us precise that the behaviour

of the sequence rn(·, ·) is related to the characteristic (short-range or long-range

dependence) of the process {hu(Y (i))}+∞

i=1 for u in a neighborhood of ξg(Y )(p). In

the case ατp > 1 corresponding to short-range dependent processes, the result is

similar to the one proved by Bahadur, see e.g. Serfling (1980), in the i.i.d. case

when assuming that F ′(·) exists and is bounded in a neighborhood of ξ(p). For

short-range dependent linear processes, Wu (2005) obtained a sharper bound, that

is n−3/4 log log(n)3/4. However, this bound was obtained under the assumption

that F ′(·) and F ′′(·) exist and are uniformly bounded. For long-range dependent

processes (ατp ≤ 1), we can observe that the rate of convergence is always lower

than n−3/4 log(n)3/4 and that the dominant term n−3/4 is obtained when ατp → 1.

Remark 4.2 To obtain convergence results of estimators of H, some results are

needed concerning empirical quantiles of the form ξ̂
(
p; g(Y am)

, with g(·) = | · |.
An obvious consequence of Lemma 6.5, is that the Hermite rank, τp of the function

hξ|Y |(p)(·) with g(·) = | · |, is given by

τp =





2 if p 6= 2Φ(
√

3) − 1,

4 if p = 2Φ(
√

3) − 1.
(25)

Consequently, for all 0 < p < 1, we have τ p = 2. From Lemma 2.1, the correlation

function of Y am

satisfies (22) with α = 2ν − 2H and L(·) = 1. Then by applying

Theorem 4.1, we obtain that the sequence rn(·, ·) is given by

rn(2ν − 2H, 2) = n−3/4 log(n)3/4, if ν ≥ 2 (26)
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and for ν = 1

rn(2 − 2H, 2) =






n−3/4 log(n)3/4 if 0 < H < 3/4,

n−3/4 log(n)3/2 if H = 3/4,

n−1/2−(1−H) log(n) if 3/4 < H < 5/6,

n−2(2−2H) log(n)2 if 5/6 ≤ H < 1.

(27)

4.2 Convergence results of Ĥα and Ĥ log

In order to precise convergence results of Ĥα and Ĥ log, we make the following

assumption concerning the remainder term of the variance function v(·).
Assumption A4(β) : there exists β > 0 such that v(t) = σ2|t|2H

(
1 + O(|t|β

)
, as

|t| → 0.

For the sake of simplicity, denote by τ̃ = mink=1,...,K τpk
, where τpk

= τ(ξg(Y )(pk))

is the Hermite rank of the function hξ(pk)(·) with g(·) = | · |. From (25), we have

τ̃ =





2, if K > 1 or K = 1 and p 6= 2Φ(
√

3) − 1,

4, if K = 1 and p = 2Φ(
√

3) − 1.
(28)

For two sequences un and vn, the notation un ≍ vn means that there exists two

constants c1, c2 such that, as n → +∞, we have c1vn ≤ un ≤ c2vn.

Theorem 4.2 Under Assumptions A1(2ν), A2 and A4(β),

(i) we have almost surely, as n → +∞

Ĥα −H =






O(n−β) + O
(
n−1/2 log(n)

)
if ν > H + 1

2τ̃
,

O(n−β) + O
(
n−1/2 log(n)3/2

)
if ν = 1, H = 1 − 1

2τ̃
,

O(n−β) + O
(
n−(1−H)τ̃ log(n)τ̃ /2

)
if ν = 1, 1 − 1

2τ̃
< H < 1.

(29)

and Ĥ log − H ≍ Ĥα − H.

(ii) the empirical mean squared errors (MSE) of Ĥα and Ĥ log satisfy

MSE
(
Ĥα − H

)
= O (vn(2ν − 2H, τ̃)) + O

(
rn(2ν − 2H, 2)2

)
+ O

(
n−2β

)
. (30)
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The sequence rn(2ν − 2H, 2) is given by (26) and (27) and the sequence vn(·, ·) is

defined by

vn(2ν − 2H, τ̃) =






n−1 if ν > H + 1
2τ̃

,

n−1 log(n) if ν = 1, H = 1 − 1
2τ̃

,

n−2(1−H)τ̃ if ν = 1, 1 − 1
2τ̃

< H < 1.

(31)

We also have,

MSE
(
Ĥ log − H

)
≍ MSE

(
Ĥα − H

)
. (32)

(iii) if the filter a is such that ν > H + 1/(2τ̃), and if β > 1/2, then we have

the following convergence in distribution, as n → +∞
√

n
(
Ĥα

n − H
)
−→ N (0, σ2

α) and
√

n
(
Ĥ log

n − H
)
−→ N (0, σ2

0), (33)

where σ2
α is defined for α ≥ 0 by

σ2
α =

∑

i∈Z

∑

j≥r

1

(2j)!

( K∑

k=1

H2j−1(qk)ck

qk

πα
k

)2

BT R(i, j)B. (34)

The vector B is defined by B =
AT

||A||2 , and the real numbers qk and πα
k are defined

by

qk = Φ−1

(
1 + pk

2

)
and πα

k =
(qk)

α

∑K
j=1 cj(qj)α

. (35)

Finally, the matrix R(i, j), defined for i ∈ Z and j ≥ 1, is a M ×M matrix whose

(m1, m2) entry is

(R(i, j))m1,m2
= ρam1 ,am2

(i)2j (36)

where ρam1 ,am2 (·) is the correlation function defined by (7).

Remark 4.3 Let us discuss results (30) and (32). The first term, O(vn), is due

to the variance of the empirical cumulative distribution function. The second term,

O(r2
n) is due to the departure of ξ̂ (p)−ξ(p) from F̂ (ξ(p))−p. We leave the reader

to check that

O(rn(2ν − 2H)2) + O(vn(2ν − 2H, τ̃)) =





O(vn(2ν − 2H, τ̃)) if ν ≥ H + 1

2τ̃
,

O(rn(2ν − 2H)2) if ν < H + 1
2τ̃

.
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Finally, the third one, O(n−2β) is a bias term due to the misspecification of the

variance function v(·) around 0.

Remark 4.4 If K = 1, we have, for every α > 0,

σ2
α = σ2

0 =
∑

i∈Z

∑

j≥1

H2j−1(q)
2

q2 (2j)!
BT R(i, j)B,

If A1(2) is only assumed, then, the order of the filter can not exceed 1. So, under

Assumption A4(β) with β > 1/2, we see that result (33) only holds for 0 < H <

7/8, if K = 1 and p = 2Φ(
√

3) − 1, and for 0 < H < 3/4, otherwise.

Remark 4.5 The condition β > 1/2 implying (33), ensures that the bias term

is is negligible with respect to n−1/2. Indeed, the bias term is governed by bn =

1/2
∑M

m=1 δam

n (0), where δam

n (0) is defined by (4). And, under Assumption A4(β),

we have bn = O(n−β). Let us precise, that if the bias term were known or at least

estimated, the following convergence in distribution would hold, as n → +∞

√
n
(
Ĥα

n − H − bn

)
−→ N (0, σ2

α) and
√

n
(
Ĥ log

n − H − bn

)
−→ N (0, σ2

0).

Next Corollary asserts the link between Ĥ log and Ĥα.

Corollary 4.1 Let (αn)n≥1 be a sequence such that αn → 0, as n → +∞. Then,

under conditions of Theorem 4.2 (ii), the following convergence in distribution

holds, as n → +∞
√

n
(
Ĥαn

n − H
)
−→ N (0, σ2

0). (37)

5 Numerical computation and simulations

Estimators defined previously depend on several parameters that is the choice of

the vectors p and c, the filter a, the number of dilated filters M and the function

g(·) which is either | · |α for some α > 0 or either g(·) = log | · |. To have an idea on
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optimal parameters, we plot the asymptoyic constant σ2
α defined by (34) in terms

of H . Figure 1 illustrates a part of this work. In fact, we compute

∑

|i|≤I

J∑

j=r

1

(2j)!

( K∑

k=1

H2j−1(qk)ck

qk
πα

k

)2

BT R(i, j)B.

with I = 200 and J = 150. We can propose the following general remarks:

• among all filters tested, the best one seems to be

a⋆ =





inc1 if H < 3/4 and K > 1, or K = 1 and p 6= 2Φ(
√

3) − 1,

inc1 if H < 7/8 and K = 1, p = 2Φ(
√

3) − 1,

db4 otherwise.

where inc1 (resp. db4) denotes the filter (1,−1) (resp. a Daubechies wavelet

filter with two zero moments).

• choice of M : increasing M seems to reduce the asymptotic constant σ2
α. Ob-

viously, a too large M increases the bias since ξ̂
(
p, c; g(XaM

)
)

is estimated

with N − Mℓ observations. We advice to fix it to 5.

• the estimator based on g(·) = log | · | seems always to have a greater variance

than the one based on the function g(·) = | · |α for all α > 0. We did not

manage (theoretically and numerically since series defining (34) are trun-

cated) to exhibit the optimal value of α. However, for examples considered,

it should turn around the value 2.

• again, this is quite difficult (theoretically and numerically) to know which

choice of p is optimal. What we observed is that, for fixed parameters a, M

and α, asymptotic constants are very near.

Then, we intend to conduct a short simulation study. Two locally self-similar

Gaussian processes whose variance functions are v(t) = |t|2H (fractional Brownian

motion) and v(t) = 1 − exp(−|t|2H) are considered. To generate sample paths

discretized over a grid [0, 1], we use the method of circulant matrix (see Wood

and Chan (1994)), which is particularly fast, even for large sample sizes. Figure 2
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presents empirical mean squared errors in terms of n, using 500 Monte-Carlo simu-

lations for three values of the Hurst parameter (H = 0.3, 0.5 and 0.8). Four L−type

estimators have been considered (based on the median, the (2Φ
√

3− 1)−quantile,

the mean of quartiles and the 10%-trimmed mean) and are compared with a ver-

sion of estimator based on quadratic variations, Coeurjolly (2001) and Whittle

estimator, e.g. Beran (1994). We can say that L−type estimators are really effi-

cient for the three values of the parameter H . We can also underline that L−type

estimators are very competitive with classical ones.

Now, let us illustrate the fact that L−type estimators are more robust to

additive outliers. The contaminated version of sample paths of processes X(t)

discretized at times i/n, that we consider, is denoted by XC(i/n) for i = 1, . . . , n.

We choose the following model

XC(i/n) = X(i/n) + U(i)V (i), (38)

where U(i), i = 1, . . . , n are Bernoulli independent variables B(p), and V (i),

i = 1, . . . , n are independent centered Gaussian variables with variance σ2
C(i) such

that the signal noise ratio at time i/n is equal to 20 dB. We choose n = 1000,

H = 0.8 and p = 0.005. Figure 3 gives some examples of discretized sample paths

of such processes. Table 1 summarizes a simulation of m = 500 replications. We

observe that L−type estimators are unchanged and, so, are robust to the model

defined by (38). This is, as expected, not the case for quadratic variations method

and Whittle estimator. Indeed, concerning quadratic variations method, the es-

timation procedure is based on the estimation of E((Xam

(1/n))2) by empirical

mean of order 2 of (Xam

)2, Coeurjolly (2001)), that is particularly sensitive to

additive outliers. Bad results of Whittle estimator can be explained by the fact

that maximum likelihood methods are also non-robust methods.

6 Proofs

We denote by || · ||L2(dφ) (resp. || · ||ℓq) the norm defined by ||h||L2(dφ) = E(h(Y )2)1/2

for some measurable function h(·) (resp. (
∑

i∈Z
|ui|q)1/2 for some sequence (ui)i∈Z).
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In order to simplify presentation of proofs, we use the notation F(·), ξ(·), f(·), F̂ (·)
and ξ̂ (·) instead of Fg(Y )(·), ξg(Y )(·), fg(Y )(·), F̂g(Y ) (·; g(Y )) and ξ̂g(Y ) (·; g(Y ))

respectively. For some real x, [x] denotes the integer part of x. Finally, λ denotes

a generic positive constant.

6.1 Auxiliary Lemmas for proof of Theorem 4.1

Lemma 6.1 Let {Y (i)}+∞
i=1 a gaussian stationary process with variance 1 and cor-

relation function ρ(·) such that, as i → +∞, |ρ(i)| ∼ L(i)i−α, for some α > 0 and

some slowly varying function at infinity L(·). Let h(·) ∈ L2 (dφ) and denote by τ

its Hermite rank. Define

Y n =
1

n

n∑

i=1

h(Y (i)).

Then, for all γ > 0, there exists a positive constant κγ = κγ(α, τ) such that

P
(
|Y n| ≥ κγyn

)
= O(n−γ), (39)

with

yn = yn(α, τ) =





n−1/2 log(n)1/2 if ατ > 1,

n−1/2 log(n)1/2Lτ (n)1/2 if ατ = 1,

n−ατ/2 log(n)r/2L(n)r/2 if 0 < ατ < 1.

(40)

where Lτ (n) =
∑

|i|≤n |ρ(i)|τ . For the case ατ = 1, we assume that for all j > τ ,

the limit, limn→+∞ Lτ (n)−1
∑

|i|≤n |ρ(i)|j exists.

Proof. Let (yn)n≥1 the sequence defined by (40). Proof is split into three parts

according to the value of ατ .

Case ατ < 1 : From Chebyshev’s inequality, we have for all q ≥ 1

P
(
|Y n| ≥ κγyn

)
≤ 1

κ2q
γ y2q

n

E
(
(Y n)2q

)
.

From Theorem 1 of Breuer and Major (1983) and in particular Equation (2.6), we

have, as n → +∞

E
(
(Y n)

2q
)
∼ (2q)!

2qq!

1

nq
σ2q, with σ2 =

∑

i∈Z

∑

j≥τ

(cj)
2

j!
ρ(i)j , (41)
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where cj denotes the j-th Hermite coefficient of h(·). Note that σ2 ≤ ||h||2L2(dφ)||ρ||2ℓτ .

Thus, for n large enough, we have

P
(
|Y n| ≥ κγyn

)
≤ λ

nqε2q
n

(2q)!

2qq!

(
||h||2L2(dφ)||ρ||2ℓτ κ−2

γ

)q

. (42)

From Stirling’s formula, we have as q → +∞
(2q)!

2qq!
∼

√
2 qq (2e−1)q. (43)

Then from (40) and by choosing q = [log(n)], (42) becomes

P
(
|Y n| ≥ κγyn

)
≤ λ

(
2e−1||h||2L2(dφ)||ρ||2ℓτ κ−2

γ

)log(n)

= O(n−γ),

if κ2
γ > 2||h||2L2(dφ)||ρ||2ℓτ exp(γ − 1).

Case ατ = 1 : Using the proof of Theorem 1′ of Breuer and Major (1983), we can

prove that for all q ≥ 1

E
(
(n1/2Lτ (n)−1/2Y n)2q) ≤ λ

2q!

2qq!
E
(
(n1/2Lτ (n)−1/2Y n)2)q

≤ λ
2q!

2qq!



∑

j≥τ

(cj)
2

j!
lim

n→+∞
Lτ (n)−1

∑

|i|≤n

|ρ(i)|j



q

≤ λ
2q!

2qq!
||h||2q

L2(dφ). (44)

Then from Chebyshev’s inequality, we have for all q ≥ 1

P
(
|Y n| ≥ κγyn

)
≤ λ

Lτ (n)q

nqε2q
n

2q!

2qq!

(
||h||2L2(dφ)κ

−2
γ

)q

.

Then from (40) and by choosing q = [log(n)], we obtain

P
(
|Y n| ≥ κγyn

)
≤ λ

(
2e−1||h||2L2(dφ) κ−2

γ

)log(n)

= O(n−γ),

if κ2
γ > 2||h||2L2(dφ) × exp(γ − 1).

Case ατ < 1 : Denote by kα the lowest integer such that kαα > 1, that is kα =

[1/α] + 1, and denote by Zj , for j ≥ τ the following random variable

Zj =
1

n

n∑

i=1

cj

j!
Hj(Y (i)).
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Denote by κ1,γ and κ2,γ two positive constants such that κγ = max(κ1,γ, κ2,γ).

From triangle’s inequality,

P
(
|Y n| ≥ κγyn

)
≤ P

(
|Y n −

kα−1∑

j=τ

Zj| ≥ κ1,γyn

)
+

kα−1∑

j=τ

P (|Zj| ≥ κ2,γyn) (45)

Since

Y n −
kα−1∑

j=τ

Zj =
1

n

n∑

i=1

∑

j≥kα

cj

j!
Hj(Y (i)) =

1

n

n∑

i=1

h′(Y (i)),

where h′(·) is a function with Hermite rank kα. Then by applying Lemma 6.1 in

the case where ατ > 1, it comes that, for all γ > 0, there exists a constant κ1,γ

such that, for n large enough

P

(
|Y n −

kα−1∑

j=τ

Zj| ≥ κ1,γyn

)
= O(n−γ), (46)

Now, let τ ≤ j < kα and q ≥ 1, from Theorem 3 of Taqqu (1977), we have

P (|Zj| ≥ κ2,γyn) ≤ 1

κ2q
2,γy

2q
n

(
cj

j!

)2q

n−2q E




∑

i1,...,i2q

Hj(Y (i1)) . . .Hj(Y (i2q))





≤ λ
L(n)jq

nαjqε2q
n

(
cj

j!
κ−1

2,γ

)2q

µ2q, (47)

where µ2q is a constant such that µ2q ≤
(

2
1−αj

)q

E (Hj(Y )2q). It is also proved in

Taqqu (1977) (p. 228), that E (Hj(Y )2q) ∼ (2jq)!/(2jq(jq)!), as q → +∞. Thus,

from Stirling’s formula, we obtain as q → +∞

P (|Zj| ≥ εn) ≤ λ
L(n)(j−τ)q

nα(j−τ)q
log(n)τqqjq

(
2

1 − αj

(
cj

j!

)2(
2j

e

)j

κ−1
2,γ

)q

.

By choosing q = [log(n)], we finally obtain, as n → +∞
kα−1∑

j=τ

P (|Zj| ≥ κ2,γyn) ≤ λ

(
2

1 − ατ

(cτ

τ !

)2
(

2τ

e

)τ

κ−2
2,γ

)log(n)

= O(n−γ), (48)

if κ2
2,γ > 2

1−ατ

(
cτ

τ !

)2
(2τ)τ exp(γ−τ). From (45), we get the result by combining (46)

and (48). �
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Corollary 6.1 Under conditions of Lemma 6.1, for all α > 0, j ≥ 1 and γ > 0,

there exists q = q(γ) ≥ 1 and ζγ > 0 such that

E



{

1

n

n∑

i=1

Hj(Y (i))

}2q

 ≤ ζγn

−γ (49)

Proof. From (41), (44) and (47), it comes that there exists λ = λ(q) > 0 such

that for all q ≥ 1, we have

E




{

1

n

n∑

i=1

Hj(Y (i))

}2q


 ≤ λ(q)n−q = λ(q) ×





n−q if αj > 1

Lτp
(n)n−q if αj = 1

L(n)αjqn−αjq if αj < 1

= O(n−γ). (50)

Indeed, it is sufficient to choose q such that, q > γ if αj ≥ 1 and q > γ/αj if

αj < 1. �

Lemma 6.2 Let 0 < p < 1, denote by g(·) a function satisfying Assumption

A3(ξ(p)) and by (xn)n≥1 a sequence with real components, such that xn → 0, as

n → +∞. Then, for all j ≥ 1, there exists a positive constant dj = dj(ξ(p)) < +∞
such that, for n large enough

|cj(ξ(p) + xn) − cj(ξ(p))| ≤ dj |xn|. (51)

Proof.

Let j ≥ 1, under Assumption A3(ξ(p)), for n large enough, ξ(p)+xn ∈ ∪L
i=1g(Ui).

Thus, for n large enough,

cj(ξ(p) + xn) − cj(ξ(p)) =

∫

R

(
hξ(p)+xn

(t) − hξ(p)(t)
)
Hj(t)φ(t)dt

=

L∑

i=1

∫

Ui

(
1gi(t)≤ξ(p)+xn

− 1gi(t)≤ξ(p)

)
Hj(t)φ(t)dt

=
L∑

i=1

∫ Mi,n

mi,n

(−1)jφ(j)(t)dt,

=






∑L
i=1 − (φ(Mi,n) − φ(mi,n)) if j = 1,

∑L
i=1(−1)j

(
φ(j−1)(Mi,n) − φ(j−1)(mi,n)

)
if j > 1,
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where gi(·) is the restriction of g(·) to Ui, and where mi,n (resp. Mi,n) is the

minimum (resp. maximum) between g−1
i (ξ(p) + xn) and g−1

i (ξ(p)). We leave the

reader to check that there exists a constant λ, such that, for n large enough

|cj(ξ(p) + xn) − cj(ξ(p))| ≤dj |xn|×





∑L
i=1

∣∣∣φ(j)(g
(−1)
i (u)) (g

(−1)
i )′(u)

∣∣∣ if j = 1, 2
∑L

i=1

∣∣∣φ(j−2)(g
(−1)
i (u)) (g

(−1)
i )′(u)

∣∣∣ if j > 2,

which is the result. �

Note that (65) is valid for all j ≥ 1 which means that for 1 ≤ j < τp, we have

cj(ξ(p) + xn) ≤ dj|xn|. (52)

Lemma 6.3 Under conditions of Theorem 4.1, there exists a constant denoted by

κε = κε(α, τp), such that, we have almost surely, as n → +∞
∣∣∣ξ̂ (p; g(Y )) − ξg(Y )(p)

∣∣∣ ≤ εn, (53)

where εn = εn(α, τ(ξ(p))) = κεyn(α, τ(ξ(p)), yn(·, ·) being defined by (40).

Proof. We have

P

(∣∣∣ξ̂ (p) − ξ(p)
∣∣∣ ≥ εn

)
= P

(
ξ̂ (p) ≤ ξ(p) − εn

)
+ P

(
ξ̂ (p) ≥ ξ(p) + εn

)
(54)

Using Lemma 1.1.4 (iii) of Serfling (1980), we have

P

(
ξ̂ (p) ≤ ξ(p) − εn

)
≤ P

(
F̂ (ξ(p) − εn) ≥ p

)
, (55)

Under Assumption A3(ξ(p)), we have, for n large enough

p − F(ξ(p) − εn) = f(ξ(p))εn + o(εn) ≥ f(ξ(p))

2
εn,

Consequently, for n large enough, we have from (55)

P

(
ξ̂ (p) ≤ ξ(p) − εn

)
≤ P

(
F̂ (ξ(p) − εn) − F(ξ(p) − εn) ≥ f(ξ(p))

2
εn

)
(56)

Define τp,n = τ(ξ(p)− εn), from Lemma 6.2 and from (52), we have for n large

enough

F̂ (ξ(p) − εn) − F(ξ(p) − εn) ≥ 2
(
F̂ (ξ(p)) − F(ξ(p))

)
+ 2εn

∑

j∈Jn

Zn,j (57)
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where

Jn =





{τp < j ≤ τp,n} if τp,n > τp,

∅ if τp,n = τp,

{τp,n ≤ j < τp} if τp,n < τp.

and Zn,j =
1

n

n∑

i=1

dj

j!
Hj(Y (i))

Now, define cε = κεf(ξ(p))/4. Let γ > 0, it comes from (49) that there exists

q ≥ 1 such that, for n large enough

P

(
|2εnZn| ≥

f(ξ(p))

2
εn

)
≤
∑

j∈Jn

P (|Zn,j| > cε)

≤
∑

j∈Jn

1

c2q
ε

E
(
Z2q

n,j

)
= O(n−γ). (58)

Let us fix γ = 2. From (56), (57) and (58) and from Lemma 6.1 (applied to the

function hξ(p)(·)), we now obtain

P

(
ξ̂ (p) ≤ ξ(p) − εn

)
≤ P

(
|F̂ (ξ(p)) − F(ξ(p))| ≥ cεεn

)
+ O(n−2) = O(n−2),

if cε > κ2 that is if κε > 4/f(ξ(p))κ2.

Let us now focus on the second right-hand term of (54). Following the sketch

of this proof, we can also obtain, for n large enough

P

(
ξ̂ (p) ≥ ξ(p) + εn

)
= O(n−2),

if κε > 4/f(ξ(p))κ2. Thus, we obtain, for n large enough

P

(∣∣∣ξ̂ (p) − ξ(p)
∣∣∣ ≥ εn

)
= O(n−2),

which leads to the result thanks to Borel-Cantelli’s Lemma. �

Following Lemma is an analog result obtained by Bahadur in the i.i.d. frame-

work, see Lemma E p.97 of Serfling (1980).

Lemma 6.4 Under conditions of Theorem 4.1, denote by ∆(z) for z ∈ R the

random variable, ∆(z) = F̂ (z; g(Y )) − Fg(Y )(z). Then, we have almost surely, as

n → +∞
Sn = sup

|x|≤εn

∣∣∆(ξg(Y )(p) + x) − ∆(ξg(Y )(p))
∣∣ = O (rn) , (59)

where εn = εn(α, τp) is defined by (53) and rn(α, τp) is defined by (24).
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Proof. Put εn = ε(α, τp) and rn = rn(α, τp). Denote by (βn)n≥1 and (ηb,n)n≥1 the

two following sequences

βn = [n3/4εn] and ηb,n = ξ(p) + εn
b

βn
,

for b = −βn, . . . , βn. Using the monotonicity of F(·) and F̂ (·), we have,

Sn ≤ max
−βn≤b≤βn

|Mb,n| + Gn, (60)

where Mb,n = ∆(ηb,n) − ∆(ξ(p)) and

Gn = max
−βn≤b≤βn−1

(F(ηb+1,n) − F(ηb+1,n)) .

Under Assumption A3(ξ(p)), we have for n large enough

Gn ≤ (ηb+1,n − ηb,n) × sup
|x|≤εn

f(ξ(p)) = O(n−3/4). (61)

The proof is finished, if one can prove that, for all γ > 0 (and in particular γ = 2)

there exists κ′
γ such that

P
(
|Mb,n| ≥ κ′

γrn

)
= O(n−γ). (62)

Indeed, since βn = O(n1/2+δ) for all δ > 0, if (62) is true, then we have

P( max
−βn≤b≤βn

|Mb,n| ≥ θ′2rn(α, τp)) ≤ (2βn + 1)P (|Mb,n| ≥ κ′
2rn)

= O(n−3/2+δ).

Thus, from Borel-Cantelli’s Lemma, we have, almost surely

max
−βn≤b≤βn

|Mb,n| = O(rn)

And so, from (60) and (61),

Sn = O(rn) + O(n−3/4) = O(rn), (63)

which is the result.
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So, the rest of the proof is devoted to prove (62). For the sake of simplicity,

denote by h′
n(·) the function hηb,n

(·) − hξ(p)(·). For n large enough, the Hermite

rank of h′
n(·) is at least equal to τ p, that is defined by (21). For the following, we

need a bound for ||h′
n||2L2(dφ). We obtain,

||h′
n||2L2(dφ) = E(h′

n(Y )2) = ωn(1 − ωn) with ωn = |Fg(Y )(ηb,n) − Fg(Y )(ξ(p))|.

As previously, we have ωn = O(εn) and so, there exists ζ > 0, such that

||h′
n||2L2(dφ) ≤ ζεn. (64)

From now on, in order to simplify the proof, we use the following upper-bound

εn = εn(α, τp) ≤ εn(α, τp).

And with a slight abuse, we still denote εn = εn(α, τp). Note also, that from

Lemma 6.2, the j-th Hermite coefficient, for some j ≥ τp, is given by cj(ηb,n) −
cj(ξ(p). And there exists a positive constant dj = dj(ξ(p)) such that for n large

enough

|cj(ηb,n) − cj(ξ(p)| ≤ dj εn
|b|
βn

≤ dj εn. (65)

We now proceed like proof of Lemma 6.1.

Case ατp > 1: using Theorem 1 of Breuer and Major (1983) and (42), we can

obtain for all q ≥ 1

P
(
|Mb,n| ≥ κ′

γrn

)
≤ λ

1

nqr2q
n

(2q)!

2qq!

1

(κ′
γ)

2q
||h′

n||2q
L2(dφ)||ρ||

2q

ℓτp
. (66)

As q → +∞, we get

P
(
|Mb,n| ≥ κ′

γrn

)
≤ λ

εq
n

nqr2q
n

qq

(
2ζe−1||ρ||2

ℓτp

1

(κ′
γ)

2

)q

.

From (24), (40) (with τ = τ p) and by choosing q = [log(n)], we have

P
(
|Mb,n| ≥ κ′

γrn

)
≤ λ

(
2ζκεe

−1||ρ||2
ℓτp

1

(κ′
γ)

2

)log(n)

= O(n−γ), (67)

if κ′
γ
2 > 2ζκε||ρ||2ℓτp exp(γ − 1).
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Case ατp = 1 from (44), we can obtain for all q ≥ 1

E
(
M2q

b,n

)
≤ λ

(2q)!

2qq!

Lτp
(n)q

nq
||h′

n||2q
L2(dφ) ≤ λ ζq (2q)!

2qq!

Lτp
(n)qεq

n

nq

≤ λ
Lτp

(n)qεq
n

nq
(2ζe−1)q qq (68)

From (24), (40) (with τ = τ p) and by choosing q = [log(n)], we have

P
(
|Mb,n| ≥ κ′

γrn

)
≤ 1

κ′
γ
2qr2q

n

E
(
M2q

b,n

)

≤ λ

(
2ζ κε e−1

d2
τp

τp!

1

κ′
γ
2

)log(n)

= O(n−γ),

if κ′
γ
2 > 2ζκεd

2
τp

/τp! exp(γ − 1).

Case ατp < 1: denote by (r1,n)n≥1 and by (r2,n)n≥1 the two following sequences

r1,n = n−1/2−ατp/4 log(n)τp/4+1/2L(n)τp/4 and r2,n = n−ατp log(n)τpL(n)τp. (69)

Note that max (r1,n, r2,n) is equal to r1,n when 2/3 < ατp < 1 and to r2,n when

0 < ατp ≤ 2/3. So, in order to obtain (62) in the case 0 < ατ p < 1, it is sufficient

to prove that there exists κ′
γ such that, for n large enough

P
(
|Mb,n| ≥ κ′

γ max(r1,n, r2,n)
)

= O(n−γ)

Denote by kα the integer [1/α] + 1, which is such that αkα > 1, and by Zj,n for

τp ≤ j < kα the random variable defined by

Zj,n =
1

n

n∑

i=1

cj(ηb,n) − cj(ξ(p)

j!
Hj(Y (i)).

From triangle’s inequality, we have

P
(
|Mb,n| ≥ κ′

γ max(r1,n, r2,n)
)
≤ P(|Mb,n−

kα−1∑

j=τp

Zj,n| ≥ κ′
γr1,n)+

kα−1∑

j=τp

P
(
|Zj,n| ≥ κ′

γr2,n

)
.

(70)

Since,

Mb,n −
kα−1∑

j=τp

Zj,n =
1

n

n∑

i=1

∑

j≥kα

cj(ηb,n) − cj(ξ(p))

j!
Hj(Y (i)) =

1

n

n∑

i=1

h′′
n(Y (i)),
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where h′′
n(·) is a function with Hermite rank kα, such that αkα > 1, we have

from (66)

P(|Mb,n −
kα−1∑

j=τp

Zj,n| ≥ κ′
γr1,n) ≤ λ

1

nqr2q
1,n

||h′
n||2q

L2(dφ)

(2q)!

2qq!

1

κ′
γ
2q ||ρ||

2q
ℓkα

(71)

for all q ≥ 1. From (64), we obtain, as q → +∞

P(|Mb,n −
kα−1∑

j=τp

Zj,n| ≥ κ′
γr1,n) ≤ λ

εq
n

nqr2q
1,n

qq
(
2ζe−1||ρ||2ℓkακ′

γ
−2
)q

.

From (40) (with τ = τp), (69) and by choosing q = [log(n)], we obtain

P(|Mb,n −
kα−1∑

j=τp

Zj,n| ≥ κ′
γr1,n) ≤ λ

(
2ζe−1||ρ||2ℓkακεκ

′
γ
−2
)log(n)

= O(n−γ), (72)

if κ′
γ
2 > κ′

1,γ = 2ζ ||ρ||2ℓkα
κε exp(γ − 1). Now, concerning the last term of (70),

from (47), we can prove, for all τ p ≤ j < kα

P
(
Zj,n ≥ κ′

γr2,n

)
≤ λ

L(n)jq

nαjq r2q
2,n

1

κ′
γ
2q

(
cj(ηb,n) − cj(ξ(p))

j!

)2q

µ2q,

where µ2q is a constant such that, as q → +∞,

µ2q ≤ λ

(
2

1 − αj

)q
(2jq)!

2jq(jq)!
.

From (65), we have, as q → +∞

P
(
Zj,n ≥ κ′

γr2,n

)
≤ λ

ε2q
n L(n)jq

nαjq r2q
2,n

qjq

(
2

1 − αj

(
2j

e

)j

d2
j κ′

γ
−2

)2q

.

From (24), (40) (with τ = τ p) and by choosing q = [log(n)], we have, as n → +∞

P
(
Zj,n ≥ κ′

γr2,n

)
≤ λ

(
log(n)L(n)

nα

)(j−τp)q
(

2

1 − αj

(
2j

e

)j

d2
j κ2

ε κ′
γ
−2

)q

Consequently, as n → +∞, we finally obtain

kα−1∑

j=τp

P
(
Zj,n ≥ κ′

γr2,n

)
≤ λ

(
2

1 − ατ

(
2τ

e

)τ

d2
τ κ2

ε κ′
γ
−2

)log(n)

= O(n−γ), (73)
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if κ′
γ
2 > κ′

2,γ = 2
1−ατ

(
2τ
e

)τ
d2

τ κ2
ε exp(γ − τ). Let us choose κ′

γ such that κ′
γ
2 >

max(κ′
1,γ, κ

′
2,γ). Then, by combining (72) and (73), we deduce from (70) that, for

every γ > 0

P
(
|Mb,n| ≥ κ′

γ max(r1,n, r2,n)
)

= O(n−γ),

and so, (63) is proved. �

6.2 Proof of Theorem 4.1

Proof. From Lemma 6.3, we deduce the almost sure convergence of ξ̂ (p) towards

ξ(p), as n → +∞. Then, from Taylor’s theorem (Young’s form), we have almost

surely, as n → +∞

F(ξ̂ (p)) − F(ξ(p)) = f(ξ(p))
(
ξ̂ (p) − ξ(p)

)
+ O

(
εn(α, τp)

2
)
,

Now, using Lemma 6.4, we have almost surely

F̂
(
ξ̂ (p)

)
− F̂ (ξ(p)) = f(ξ(p))

(
ξ̂ (p) − ξ(p)

)
+ O

(
εn(α, τp)

2
)

+ O (rn(α, τp)) .

We have almost surely, see e.g. Serfling (1980), F̂
(
ξ̂ (p)

)
= p+O(n−1). Thus, we

finally obtain

ξ̂ (p) − ξ(p) =
p − F̂

(
ξ̂ (p)

)

f(ξ(p))
+ O

(
εn(α, τp)

2
)

+ O (rn(α, τp)) + O(n−1),

which leads to the result by noting that εn(α, τp)
2 = O(rn(α, τp)). �

6.3 Auxiliary Lemma for proof of Theorem 4.2

Lemma 6.5 Consider for 0 < p < 1, the function hp(·) given by

hp(t) = 1{|t|≤ξ|Y |(p)}(t) − p, (74)

that is the function hξg(Y )(p)(·) with g(·) = | · |. Then, we have for all j ≥ 1

c
hp

0 = c
hp

2j+1 = 0 and c
hp

2j = −2H2j−1(q)φ(q), (75)

where we denote by q = ξ|Y |(p) = Φ−1
(

1+p
2

)
.
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Proof. Since P (|Y | ≤ q) = p and since hp(·) is even, we have c
hp

0 = c
hp

2j+1 = 0 for

all j ≥ 1. Now, from (19), it comes

c
hp

2j =

∫

R

hp(t)H2j(t)φ(t)dt = 2 ×
∫ q

0

H2j(t)φ(t)dt

= 2 ×
[
φ(2j−1)(t)

]q
0

= 2 × [−H2j−1(t)φ(t)]q0

= − 2H2j−1(q)φ(q).

�

Remark 6.1 Let g(·) = g̃(| · |), where g̃(·) is a strictly increasing function on R
+,

then for all 0 < p < 1, we have

ξ|Y |(p) = g̃−1
(
ξg(Y )(p)

)
.

Consequently, the functions hξg(Y )(p)(·) for g(·) = | · |, g(·) = | · |α and g(·) = log | · |
are strictly identical. And so, their Hermite decomposition is given by (75) and

their Hermite rank by (25).

6.4 Proof of Theorem 4.2

Proof. (i) Define

bn =
1

2

M∑

m=1

Bmδam

n (0), (76)

where δam

n (0) is given by (4). From (14), (15), and (18), we have almost surely

Ĥα−H =
M∑

m=1

Bm

α
εα

m

=

M∑

m=1

Bm

α
log

(
ξ̂
(
p, c; |Y am

|α
)

ξ|Y |α (p, c)

)
+ bn

=
M∑

m=1

Bm

αξ|Y |α (p, c)

(
ξ̂
(
p, c; |Y am

|α
)
− ξ|Y |α (p, c)

)
(1 + o(1)) + bn. (77)

and

Ĥ log − H =

M∑

m=1

Bmεlog
m
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=

M∑

m=1

Bm

(
ξ̂
(
p, c; log |Y am

|
)
− ξlog |Y | (p, c)

)
+ bn (78)

Under Assumption (A4(β)), we have

bn = O(n−β). (79)

Moreover, let i, j ≥ 1, under Assumption A1(2ν), we have, from Lemma 2.1

E(Y am

(i)Y am

(i + j)) = ρam

(j) = O(|j|2H−2ν).

Then, for all m = 1, . . . , M and for all k = 1, . . . , K, from Lemma 6.3 and Re-

mark 6.1, we obtain, that almost surely

ξ̂
(
pk; |Y

am

|α
)
− ξ|Y |α(pk) = O (yn(2ν − 2H, τpk

)) ,

ξ̂
(
pk; log |Y am

|
)
− ξlog |Y |(pk) = O (yn(2ν − 2H, τpk

)) ,

where the sequence yn(·, ·) is defined by (40) with L(·) = 1. The result (29) is

obtained by combining (77), (78) and (79).

(ii) Let us apply Theorem 4.1 to the sequence g(Y am

), for some m = 1, . . . , M ,

with g(·) = | · |, g(·) = | · |α and g(·) = log | · |. For all k = 1, . . . , K, we have almost

surely

ξ̂
(
pk; |Y

am

|
)
− ξ|Y |(pk) =

pk − F̂
(
ξ|Y |(pk); |Y

am

|
)

f|Y |α(ξ|Y |(pk))
+ O(rn)

ξ̂
(
pk; |Y

am

|α
)
− ξ|Y |α(pk) =

pk − F̂
(
ξ|Y |α(pk); |Y

am

|α
)

f|Y |α(ξ|Y |α(pk))
+ O(rn)

ξ̂
(
pk; log |Y am

|
)
− ξlog |Y |(pk) =

pk − F̂
(
ξlog |Y |(pk); log |Y am

|
)

flog |Y |(ξlog |Y |(pk))
+ O(rn),

where, for the sake of simplicity, rn = rn(2ν − 2H, τpk
) defined by (26) and (27).

Note that from Remark 6.1 and from (25), τ pk
= 2 for all k = 1, . . . , K.

With some little computation, we can obtain, almost surely

ξ̂
(
pk; |Y

am

|α
)
−ξ|Y |α(pk) = αξ|Y |(pk)

α−1
(
ξ̂
(
pk; |Y

am

|
)
− ξ|Y |(pk)

)
+O(rn), (80)

and

ξ̂
(
pk; log |Y am

|
)
−ξlog |Y |(pk) = ξ|Y |(pk)

−1
(
ξ̂
(
pk; |Y

am

|
)
− ξ|Y |(pk)

)
+O(rn). (81)
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From (77), (78), (80), (81) and properties of Gaussian variables, the following

results hold almost surely

Ĥα − H =
M∑

m=1

K∑

k=1

Bm ck

2qkφ(qk)
πk,α

(
F̂ (qk; |Y |) − pk

)
+ O(rn) + O(bn), (82)

and

Ĥ log − H =
M∑

m=1

K∑

k=1

Bm ck

2qkφ(qk)

(
F̂ (qk; |Y |) − pk

)
+ O(rn) + O(bn), (83)

where qk and πα
k are defined by (35). Denote by θα

m,k the following constant

θα
m,k =

Bmck

2qkφ(qk)
πα

k .

Since π0
k = 1, (82) and (83) can be rewritten as

Ĥα − H = Zα
n + O (rn(2ν − 2H, 2)) + O(bn) (84)

Ĥ log − H = Z0
n + O (rn(2ν − 2H, 2)) + O(bn), (85)

where for α ≥ 0,

Zα
n =

M∑

m=1

K∑

k=1

θα
m,k

(
F̂ (qk; |Y |) − pk

)
. (86)

Thus, under Assumption A4(β), we have, as n → +∞,

MSE(Ĥα − H) = O
(
E
(
(Zα

n )2
))

+ O
(
rn(2ν − 2H, τ̃)2

)
+ O(n−2β), (87)

MSE(Ĥ log − H) = O
(
E
(
(Z0

n)2
))

+ O
(
rn(2ν − 2H, τ̃)2

)
+ O(n−2β). (88)

Now,

E
(
(Zα

n )2
)

=
1

n2

M∑

m1,m2=1

K∑

k1,k2=1

n∑

i1,i2=1

θα
m1,k1

θα
m2,k2

E
(
hqk1

(Y am1 (i1))hqk2
(Y am2 (i2))

)
.

For k1, k2 = 1, . . . , K, m1, m2 = 1, . . . , M and i1, i2 = 1, . . . , n, we have from

Lemma 6.5,

E
(
hqk1

(Y am1 (i1))hqk2
(Y am2 (i2))

)
=

∑

j1≥τpk1
/2

∑

j2≥τpk2
/2

c2j1(qk1)c2j2(qk2)

(2j1)!(2j2)!

× E
(
H2j1(Y

am1 (i1))H2j2(Y
am2 (i2))

)

=
∑

j≥τ̃/2

c2j(qk1)c2j(qk2)

(2j)!
ρam1 ,am2

(i2 − i1)
2j .
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Under Assumption A1(2ν), we have from Lemma 2.1, ρam1 ,am2 (i) = O(|i|2H−2ν).

Now, we leave the reader to check that, as n → +∞

1

n2

n∑

i1,i2=1

ρam1 ,am2 (i2 − i1)
τ̃ = O


 1

n

∑

|i|≤n

|i|(2H−2ν)τ̃


 = O (vn(2ν − 2H), τ̃)) ,

where the sequence vn(·, ·) is given by (31). Thus, we have, as n → +∞, E ((Zα
n )2) =

O (vn(2ν − 2H), τ̃)), which leads to the result from (87) and (88).

(iii) Assume ν > H + 1/(2τ̃) and β > 1/2, then from (84) and (85), the

following equivalences in distribution hold

√
n
(
Ĥα

n − H
)
∼ √

n Zα
n and

√
n
(
Ĥ log

n − H
)
∼ √

n Z0
n. (89)

Now, decompose Zα
n = T 1

n + T 2
n , where

T 1
n =

1√
n

M∑

m=1

K∑

k=1

θα
m,k

Mℓ+1∑

i=ℓ+1

hqk
(Y am

(i))

and

T 2
n =

√
n

M∑

m=1

K∑

k=1

θα
m,k

{
1

n

n∑

i=Mℓ+1

hqk
(Y am

(i))

}
,

Clearly, T 1
n converges to 0 in probability, as n → +∞. Therefore, we have, as

n → +∞
Zα

n ∼ √
n

{
1

n

n∑

i=Mℓ+1

Gα
(
Y a1

(i), . . . , Y aM

(i)
)}

(90)

where Gα is the function from R
M to R defined for α ≥ 0 and t1, . . . , tM ∈ R by:

Gα(t1, . . . , tM) =
M∑

m=1

K∑

k=1

θm,k hqk
(tm). (91)

Denote by Ỹ a(i), the vector defined for i = Mℓ + 1, . . . , n by

Ỹ a(i) = (Y a1

(i), . . . , Y aM

(i)).

We obviously have E(Gα(Ỹ a(i))2) < +∞. Since, for all k = 1, . . . , K, the func-

tions hqk
have Hermite rank τpk

, the function Gα has Hermite rank τ̃ (see e.g.
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Arcones (1994) for the definition of the Hermite rank of multivariate functions).

Moreover under Assumption A1(2ν), we have from Lemma 2.1, as j → +∞

E
(
Y am1

(i)Y am2

(i + j)
)

= ρam1 ,am2

(j) = O
(
|j|2H−2ν

)
∈ ℓ2(Z),

as soon as ν > H + 1/(2τ̃). Thus, from Theorem 4 of Arcones (1994), there

exists σ2
α (defined for α ≥ 0) such that, as n → +∞, the following convergence in

distribution holds

Zα
n −→ N (0, σ2

α)

with

σ2
α =

∑

i∈Z

E
(
Gα
(
Ỹ a(i′)

)
Gα
(
Ỹ a(i′ + i)

))
.

With previous notations, we have

σ2
α =

∑

i∈Z

M∑

m1,m2=1

K∑

k1,k2=1

θα
m1,k1

θα
m2,k2

E
(
hpk1

(Y am1

(i′))hpk2
(Y am2

(i′ + i))
)

=
∑

i∈Z

M∑

m1,m2=1

K∑

k1,k2=1

∑

j≥r

c
hpk1
2j c

hpk2
2j

(2j)!
θα

m1,k1
θα

m2,k2
ρam1 ,am2

(i)2j . (92)

From (75), we can see that formula (92) is equivalent to (34), which ends the proof

from (89). �

6.5 Proof of Corollary 4.1

Proof. Equation (90) is still available for a sequence αn such that αn → 0 as

n → +∞, that is

√
n
(
Ĥαn

n − H
)
∼ √

n

{
1

n

n∑

i=Mℓ+1

Gαn

(
Y a1

(i), . . . , Y aM

(i)
)}

From (91) and since παn

k → 1, as n → +∞, we have Gαn(·) → G0(·). Therefore,

the following equivalence in distribution holds, as n → +∞
√

n
(
Ĥαn

n − H
)
∼ √

n
(
Ĥ log

n − H
)

,

which ends the proof. �
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index of a Gaussian process. Ann. Inst. H. Poincaré Probab. Statist. 33 407-436.
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Figure 1: Constants of empirical variances in terms of H for estimators based on

the median and on the (2Φ(
√

3)− 1)−quantile (top) and on the mean of quartiles

(below).
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Figure 2: Empirical mean squared errrors in terms of n using 500 Monte Carlo

simulations of sample paths of processes with variance function v(t) = |t|2H , frac-

tional Brownian motion, (left) and v(·) = 1− exp(−| · |2H) (right). The parameter

H equals 0.3 (top), 0.5 (middle) and 0.8 (below).
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Estimators v(·) = | · |2H v(·) = 1 − exp(−| · |2H)

p = 1/2, c = 1 (median) 0.798 (0.047) 0.803 (0.045)

p = 2Φ(
√

3) − 1, c = 1 0.793 (0.033) 0.789 (0.032)

p = (1/4, 3/4),c = (1/2, 1/2), g(·) = | · |2 0.797 (0.040) 0.796 (0.037)

p = (1/4, 3/4),c = (1/2, 1/2) , g(·) = log | · | 0.798 (0.044) 0.804 (0.044)

10%-trimmed mean, g(·) = | · |2 0.792 (0.037) 0.797 (0.033)

Quadratic variations method 0.329 (0.162) 0.353 (0.149)

Whittle estimator 0.519 (0.106) 0.510 (0.100)

Table 1: Empirical mean and standard deviations for n = 1000 and H = 0.8 using

500 Monte Carlo simulations of contaminated (see (38)) sample paths of processes

with variance function v(·) = | · |2H and v(·) = 1 − exp(−| · |2H).

Figure 3: Example of sample path of non-contaminted (top) and contaminated

(bottom), see (38), processes with variance function v(·) = | · |2H (left) and v(·) =

1 − exp(−| · |2H) (right).


