Numerical study of a new global minimizer for the Mumford-Shah functional in $\R^3$ - Archive ouverte HAL
Article Dans Une Revue ESAIM: Control, Optimisation and Calculus of Variations Année : 2007

Numerical study of a new global minimizer for the Mumford-Shah functional in $\R^3$

Résumé

In [8], G. David suggested a new type of global minimizer for the Mumford-Shah functional in $\R^3$, for which the singular sets belong to a three parameters family of sets ($0<\delta_1,\delta_2,\delta_3<\pi$). We first derive necessary conditions satisfied by global minimizers of this family. Then we are led to study the first eigenvectors of the Laplace-Beltrami operator with Neumann boundary conditions on subdomains of $\mathbf{S}^2$ with three reentrant corners. The necessary conditions are constraints on the eigenvalue and on the ratios between the singular coefficients of the associated eigenvector. We use numerical methods (Singular Functions Method and Moussaoui's extraction formula) to compute the eigenvalues and the singular coefficients. We conclude that there is no $(\delta_1,\delta_2,\delta_3)$ for which the necessary conditions are satisfied and this shows that the hypothesis was wrong.
Fichier principal
Vignette du fichier
paper.pdf (295.87 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00004669 , version 1 (12-04-2005)

Identifiants

Citer

Benoît Merlet. Numerical study of a new global minimizer for the Mumford-Shah functional in $\R^3$. ESAIM: Control, Optimisation and Calculus of Variations, 2007, 13 (3), pp.553-569. ⟨hal-00004669⟩
177 Consultations
127 Téléchargements

Altmetric

Partager

More