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NUMERICAL STUDY OF A NEW GLOBAL MINIMIZER FOR THE

MUMFORD-SHAH FUNCTIONAL IN R3

BENOÎT MERLET

Abstract. In [8], G. David suggested a new type of global minimizer for the Mumford-Shah functional
in R

3, for which the singular sets belong to a three parameters family of sets (0 < δ1, δ2, δ3 < π). We first
derive necessary conditions satisfied by global minimizers of this family. Then we are led to study the
first eigenvectors of the Laplace-Beltrami operator with Neumann boundary conditions on subdomains
of S

2 with three reentrant corners. The necessary conditions are constraints on the eigenvalue and on
the ratios between the singular coefficients of the associated eigenvector. We use numerical methods
(Singular Functions Method and Moussaoui’s extraction formula) to compute the eigenvalues and the
singular coefficients. We conclude that there is no (δ1, δ2, δ3) for which the necessary conditions are
satisfied and this shows that the hypothesis was wrong.

Keywords: Mumford-Shah functional, Numerical analysis, Boundary value problems for second-order,
elliptic equations in domains with corners.

AMS classification: 35J25, 49R50, 65N38.

1. Introduction

The Mumford-Shah functional was introduced in [14] as a tool for image segmentation. Let Ω be a
bounded open subset of Rn (the screen) and g be a bounded measurable function defined on Ω (rep-
resenting the image). The functional concerns pairs (u,K) where K is a closed subset of Ω and u is a
function belonging to the Sobolev space H1(Ω \K). It is defined by

J(u,K) := Hn−1(K) +

∫

Ω\K

|∇u|2 +

∫

Ω\K

|u− g|2,

where Hn−1(K) is the Hausdorff measure of co-dimension 1 of K. Let (u,K) be a minimizing pair of J ,
(wich always exists [1, 9]). The third term of the functional forces u to be close to g while, due to the
second term, u has slow variation on Ω \K. Since no regularity is assumed for u across the singular set
K, we may hope that for such a minimizer K is the hyper-surface across which g has great variations, i.e
: the hyper-surfaces delimiting the contours of the image.

The main difficulty arising in the theoretical study of the minimizers is the regularity of the singular
set. First, let us notice that we may remove from K a set of Hn−1 measure 0 which is not useful. Indeed,
if (u,K) is a minimizer, there exists a smallest closed set K1 ⊂ K such that u ∈ H1(Ω \ K1). The
pair (u,K1) is called a reduced minimizer of the functional. In dimension n = 2, Mumford and Shah
conjectured that if (u,K) is a reduced minimizer for J and Ω is bounded and smooth, K is a finite union
of C1 arcs of curves, that may only meet by sets of three, at their ends, and with angles of 2π/3.

This conjecture still resists but there exist partial results. In particular, A. Bonnet [2] showed that in
the case n = 2, every isolated connected component of K is a finite union of C1 curves.

The crucial point introduced by A. Bonnet was a blow-up process, which leads to the notion of global
minimizer of the Mumford-Shah functional. One way to prove the Mumford-Shah conjecture would be to
get a complete description of all the global minimizers and then, if the global minimizers turned out to
be simple, go back to the minimizers of the functional in a domain. The second step would be realized by
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proving that if a minimizer is closed to a global minimizer (which is true via blow-up) then its singular
set is smooth.

Here we are concerned with the case n = 3. In this context, one may conjecture that the singular set
of minimizer is a finite union of C1 surfaces intersecting each other on a finite number of C1 curves.

Let us first describe the blow-up technique. Let (u,K) be a reduced minimizer of J , let x ∈ Ω and let
t > 0, we set

Ωx,t := t−1(Ω − x),

gx,t(y) := t−1/2g(x+ ty), ∀ y ∈ Ωx,t,

Kx,t := t−1(K − x),

ux,t(y) := t−1/2u(x+ ty), ∀ y ∈ Ωx,t.

Then (ux,t,Kx,t) is a minimizer of the modified functional Jx,t in Ωx,t where

Jx,t(v,G) := Hn−1(G) +

∫

Ωx,t\G

|∇v|2 + t2
∫

Ωx,t\G

|v − gx,t|2.

Now, let us take a sequence (tk)k ↓ 0 and set (uk,Kk) := (ux,tk
,Kx,tk

) to simplify the notations. Such a
sequence is called a blow-up sequence of (u,K) at x. It turns out that up to extraction, the sequence of
sets Kk converges to a closed subset K∞ of R3. On the other hand, since the factor t−1/2 tends to infinity
when t tends to 0, the sequence uk may not converge to a function having finite values. To overcome
this difficulty, we have to subtract from uk a function which is constant on every connected component
of R3 \K∞. More precisely, we have

Theorem 1.1. There exists a closed subset K∞ ⊂ Rn, a function u∞ ∈ L1
loc(R

n) and for each connected
component V of Rn \K∞, constants (βV,k)k such that up to a subsequence,

Kk −→ K∞ locally for the Hausdorff distance, uk − βV,k −→ u∞ in L1
loc(V ).

Moreover, the limit pair (u∞,K∞) is a reduced global minimizer of the Mumford-Shah functional in Rn

(see Definition 1.1).

Definition 1.1. Let K be a closed subset of Rn and let u ∈ L1
loc(R

n). The pair (u,K) is a global
minimizer of the Mumford-Shah functional in Rn if the following properties hold.

• For every open ball B in Rn, Hn−1(K ∩B) <∞ and
∫

B\K
|∇u|2 <∞.

• For every open ball B in Rn, for every pair (v, L) which satisfies the property above and such
that

a) L \B = K \B, b) v|Rn\B = u|Rn\B,

c) if x, y ∈ Rn \ (B ∪K) belong to a same connected component of Rn \L, then they are also in
a same connected component of Rn \K,
then

Hn−1(K ∩B) +

∫

B\K

|∇u|2 ≤ Hn−1(L ∩B) +

∫

B\L

|∇v|2.(1)

From now on, we fix n = 3. Let us list types of reduced global minimizers (u,K) that are already
known. For the first four types, the function u is constant on each connected component of R3 \K.

(i) K = ∅.
(ii) K is a plane.
(iii) K is the union of three half planes sharing the same edge and making angles 2π/3 with each

other.
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(iv) K is the half cone spanned by the edges of a regular tetrahedron from its center. In this case
R3 \ K has four connected components, each one being delimited by three infinite triangular
faces.

(v) (Cracktips) K is a half plane. Choosing coordinates such that K = {(x, 0, z), x ≥ 0, z ∈ R}, the
function u is defined by

u(r cos θ, r sin θ, z) = ε

√

2r

π
cos

θ

2
+ C, ∀ r > 0, 0 < θ < 2π,

where C is a constant and ε = ±1.

If this list was complete, from Theorem 1.1, every blow-up limit of a reduced minimizer should be one of
the listed global minimizers. Let us now describe an example of [8] for which this situation seems to be
wrong. The whole argument is heuristic and is far from a proof. Let R > 0 and C > 0, the domain is
the cylinder Ω = {(x, y, z), x2 + y2 < R, −R < z < R (see Figure 1) and g(x, y, z) := g0(x, y)ϕ(z) where

g0(r cos θ, r sin θ) :=







C for 0 < θ < 2π/3,
0 for 2π/3 < θ < 4π/3,
−C for 4π/3 < θ < 2π,

and ϕ is a smooth cut-off function satisfying 0 ≤ ϕ ≤ 1 and

ϕ(z) =

{

1 for z ≥ 1,
0 for z ≤ −1.

Let us now consider a minimizer (u,K) of the functional J associated to Ω and g. Since g ≡ 0 for
small z, one may think that, for z0 close to −R, K ∩ {z = z0} = ∅. On the other hand, for z0 close to R,
since g = g0, we may suppose that K ∩ {z = z0} is close to the union of the three segments across which
g jumps, i.e: {(r cos θ, r sin θ, z0) : 0 ≤ r < R, θ = 2kπ/3, k = 0, 1, 2}. We may then expect that K is
the union of three regular surfaces meeting on a curve {γ(t) : 0 ≤ t ≤ 1} satisfying γ(0) = (0, 0, R) and
γ(1) = (x0, y0, z0) with z0 > −R. See Figure 2 below.

g ≡ 0

g ≡ 0

x

y

z

g ≡ C

g ≡ −C

Figure 1. Cylindrical domain Ω Figure 2. Expected shape for the
singular set K

For 0 < t < 1, a blow-up around the point γ(t) would lead to a global minimizer whose singular set is
the union of three half planes sharing the same edge. These global minimizers should be of type (iii) and
it is not necessary to introduce a new type of global minimizers if we suppose that the angles between
the half plane are 2π/3. The situation is different when we consider a limit blow-up at γ(1). At this
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point we expect a global minimizer (u⋆,K⋆) whose singular set is the union of three plane sectors with
a common edge and that make angles 2π/3. More precisely, intersecting K⋆ with the unitary sphere S2,
we obtain a set of three arcs of big circles Mi ⊂ S2, i = 1, 2, 3. These arcs are vertical, start at the north
pole where they make three angles of 2π/3. Denoting their lengths δi, i = 1, 2, 3, we obtain:

K⋆ = Kδ1,δ2,δ3 := R+ ×
3
⋃

i=1

Mi.(2)

No global minimizer with this kind of singular set is known. And we may thing that the previous list of
global minimizer was noy complete. The hypothesis of G. David is the following ([8], sections 76 and 80):

Hypothesis 1.1. There exists a new type of reduced global minimizers (u⋆,K⋆) where by translation and
rotation invariance there exists 0 < δ1, δ2, δ3 < π such that K⋆ = Kδ1,δ2,δ3 and where the function u⋆ is
homogeneous of degree 1/2, i.e:

u⋆(x) = |x|1/2Σ⋆(x/|x|).
Moreover, this new class of global minimizers may be generated by one of them, using translation, rotation,
multiplication by −1 and addition of a constant.
With this new type of global minimizers, the list of reduced global minimizers is closed.

Remark 1.1. For n = 3, the homogeneity 1/2 is the natural homogenity for a global minimizer. In
fact, if we suppose that u⋆ is homogeneous of degree α then the equilibrium between the surface term and
the Dirichlet energy term in (1) leads to α = 1/2 or u locally constant. In our case, the homogeneity 0
is impossible (we would remove any bounded piece of K and contradict (1)). To get α = 1/2, consider
L = K \ B(0, r) ∪ ∂B(0, r) and v = 0 in B(0, r), then let R go to 0 in (1) to obtain α ≥ 1/2 and let R
go to +∞ to obtain the second inequality.

The paper is organized as follows. In section 2, we set the notations. In section 3, we find some
necessary conditions satisfied by (δ1, δ2, δ3) and Σ if the hypothesis were true. Section 4 is devoted to
the description of the numerical methods we have used to check these conditions. The numerical results
are presented in section 5.

Acknowledgment. The author thanks Guy David for having proposed this work and for helpful support.
For every fact concerning the Mumford-Shah functional, we refer to his book [8]. We are also indebted
to Patrick Ciarlet and Monique Dauge for helpful informations on the Singular Functions Method and
other related methods.

2. Notations

Let δ = (δ1, δ2, δ3) be in (0, π)3, and let M1,M2,M3 ⊂ S2 be three arcs of great circles starting from
the north pole with relative angles 2π/3 and with respective lengths δ1, δ2, δ3. Without loss of generality,
we will assume that

M1 ⊂ C1 := S2 ∩ {(x, y, z) : y ≤ 0, x = 0} ,
M2 ⊂ C2 := S2 ∩

{

(x, y, z) : y ≥ 0, x =
√

3y
}

,

M3 ⊂ C2 := S2 ∩
{

(x, y, z) : y ≥ 0, x = −
√

3y
}

.

Let P be the plane {(x, y, z) ∈ R3 : x = 0}, in particular C1 ⊂ P . The open subset of S2 : S2 \ ∪3
i=1Ci

has three connected subdomains Ω−1,Ω0,Ω1. Ω0 is symmetric with respect to P (i.e: (0, 1, 0) ∈ Ω0) and
Ωi = Ri(Ω0), i = −1, 1, where R denotes the rotation of angle 2π/3 around the z-axis (with the usual
orientation).
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We will denote by Sδ the domain

Sδ := S2 \
3
⋃

i=1

Mi.

In the sequel, L2(Sδ), H
1(Sδ) and H2(Sδ) will denote the standard Sobolev spaces on Sδ and ∆ the

Laplace-Beltrami operator on S2. We also define the closed subspaces :

L2
0(Sδ) :=

{

Σ ∈ L2(Sδ) :

∫

Sδ

Σ = 0

}

,

V 1(Sδ) := L2
0(Sδ) ∩H1(Sδ).

We recall the following classical result:

Theorem 2.1. Let δ ∈ (0, π)3. For any f in L2
0(Sδ), there exists a unique Σ in V 1(Sδ) such that

{

−∆Σ = f, in Sδ,
∂nΣ = 0, on ∂Sδ.

(3)

Equivalently, Σ is the unique solution in V 1(Sδ) of the variational problem:
∫

∇Σ · ∇S =
∫

fS for every
S in V 1(Sδ). It is also the unique minimizer in V 1(Sδ) of the functional F (S) := 1/2

∫

|∇S|2 −
∫

fS.

We will note Σ := −∆−1
N,δf this solution.

The operator ∆−1
N is a compact symmetric operator on L2

0(Sδ). We will use spectral properties of such

operators. In particular, L2
0(Sδ) has an orthonormal basis of eigenvectors of ∆−1

N,δ. We will note µ1(δ) ≥
µ2(δ) ≥ · · · > 0 the eigenvalues of −∆−1

N,δ counting multiplicities and for k ≥ 1, we set λk(δ) := 1/µk(δ).
Alternatively, these eigenvalues may be defined by:

λk(δ) := min
Vk

max

{
∫

Sδ

|∇S2| : S ∈ Vk,

∫

Sδ

S2 = 1

}

,

where the minimum is taken over all k-dimensional subspace Vk of L2
0(Sδ).

When δ = (0, 0, 0), it is well known that λk(0, 0, 0) = 2 for k = 1, 2, 3 with associated eigenvectors
(x, y, z) 7→ x, y or z. In particular:

∫

S2

|∇S|2 ≥ 2

∫

S2

S2 ∀S ∈ V 1(S2).(4)

This property will be used at the end of section 3.
We will need some well known facts about the splitting in regular and singular parts of solutions to

the Poisson problem with Neumann boundary conditions in a domain with corners. For this theory, we
refer to [5], [11] or [12]. Let us denote by ξi the end of Mi for i = 1, 2, 3. The domain Sδ possesses 3
re-entrant corners of angles 2π at ξ1, ξ2, ξ3 .

Remark 2.1. In [5], [11], only flat domains are considered. In order to prove Theorem 2.2, we may use
local smooth maps to transform the −∆ operator on Sδ in an elliptic operator with smooth coefficients
on a planar domain with a cut. In fact, it seems more natural to prove Theorem 2.2 directly. The main
ingredients, Green formula, trace theorems, density results and use of polar coordinates do not change
when one replace the planar domain with cuts by Sδ.

We begin in introducing a set of singular functions.

Definition 2.1. For x ∈ Sδ, let ri(x) denote the geodesic distance on S2 between the points ξi and x.
Using the usual orientation on S2, for x ∈ Sδ in the neighborhood of ξ, θi(x) denotes the angle at ξi
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between Mi and the smallest geodesic segments [ξi, x] (see Figure 3 below). We use (ri(x), θi(x)) as polar
coordinates near ξi to define

si(x) := 2 tan

(

√

ri(x)

2

)

cos

(

θi(x)

2

)

ψ(x/ρi), for x ∈ Sδ and i = 1, 2, 3,

where ψ ∈ C∞
c (R+,R) is a smooth cut-off function such that ψ ≡ 1 on [0, 1/2] and ψ ≡ 0 on [1,+∞).

The positive numbers ρ1, ρ2, ρ3 are chosen such that for {x ∈ Mj : j 6= i} we have ri(x) > ρi . In
particular the functions si have disjoint supports.

M1

M2

M3

2π/3

2π/3

ξ1

ξ2

Figure 3. Sδ

For i = 1, 2, 3, the function si defined above belongs to H1(Sδ). Moreover, this function satisfies
homogeneous Neumann boundary conditions on ∂Sδ, we have

∫

Sδ
si = 0 and ∆si belongs to L2(Sδ). In

fact ∆si ≡ 0 on {x : ri(x) < ρi/2}. If Sδ were a domain with a smooth boundary, then the quoted
properties would imply: si ∈ H2(Sδ). In fact, we have si ∈ Hs(Sδ) if and only if s < 3/2.

Theorem 2.2. Let f ∈ L2(Sδ) such that
∫

Sδ
f = 0, and let Σ ∈ H1(Sδ) solves

[{]∆Σ = f, in Sδ,

∂nΣ = 0, on ∂Sδ.

Then there exists Σ̃ ∈ H2(Sδ) and α1, α2, α3 ∈ R such that

Σ = Σ̃ +

3
∑

i=1

αisi.

3. Necessary conditions

Let (u⋆,K⋆), δ and Σ⋆ be as in Hypothesis 1.1.

1st condition

Since (u⋆,K⋆) is a global minimizer, the function u⋆ belongs to H1(B(0, r) \K⋆) for every r > 0, thus
Σ⋆ ∈ H1(Sδ) and from Remark 1.1, we have:

Σ⋆ ∈ H1(Sδ) \ {0}.(5)
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2nd condition

Moreover, from (1) with L = K⋆, we have for every r > 0 and every v in H1(B(0, r) \ K⋆) such that
v|∂B(0,r) = u|∂B(0,r):

∫

B(0,r)

|∇u⋆|2 ≤
∫

B(0,r)

|∇v|2.

We deduce that u⋆ is harmonic in R3 \K⋆ and satisfies homogeneous Neumann boundary conditions on
K. In term of Σ⋆, the last assertion reads

{

−∆Σ⋆ = 3/4Σ⋆ in Sδ,
∂nΣ⋆ = 0 on ∂Sδ.

(6)

In particular
∫

Sδ

Σ⋆ = 0.(7)

3rd condition

By the uniqueness assumption in Hypothesis 1.1, K⋆ is unique up to rotation and translation. Thus, at
least two of the lengths δi are equal. In the sequel, we will assume without loss of generality that Sδ is
symmetric with respect to P , i.e:

δ2 = δ3.(8)

By uniqueness we also have

Σ⋆(x, y, z) = Σ⋆(−x, y, z), ∀ (x, y, z) ∈ Sδ,(9)

or Σ⋆(x, y, z) = −Σ⋆(−x, y, z), ∀ (x, y, z) ∈ Sδ.(10)

4th condition

From (5),(6),(7), we may apply Theorem 2.2 with f = −3/4Σ⋆ and Σ = Σ⋆. There exist Σ̃⋆ ∈ H2(Sδ)
and α⋆

1, α
⋆
2, α

⋆
3 ∈ R such that

Σ⋆ = Σ̃⋆ +

3
∑

i=1

α⋆
i si.(11)

Now let us return in R3, let 1 ≤ i ≤ 3 and let us define a blow-up sequence (uk,Kk)k of (u⋆,K⋆) at ξi.
Let Di be the line Rξi and Pi be the half plane containing Mi and whose edge is Di. It is clear that the
sequence (Kk) converges to Pi locally for the Hausdorff distance. Let us study the L1

loc convergence of
the sequence (uk)k. We denote by Π the map R3 \ {0} → S2 defined by Π(x) := x/|x|. Using the above
decomposition, we have

uk(y) = t
−1/2
k u⋆ (ξi + tky) = |ξi/tk + y|1/2

Σ⋆ (Π(ξi + tky)) .

Let B an open ball ball of R3. Using the decomposition (11) and the fact that for j 6= i, sj ≡ 0 in the
neighborhood of ξj , we have for tk small enough:

uk(y) = |ξi/tk + y|1/2
(

α⋆
i si (Π(ξi + tky)) + Σ̃⋆ (Π(ξi + tky))

)

,

= Ik(y) + IIk(y).
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Now we introduce new polar coordinates in R3: (Ri(y),Θi(y), zi(y)) such that Di = {y : Ri(y) = 0},
Pi = {y : Θi(y) = 0} and the azimuth is uniquely defined by zi(ξi) = 1 and zi(0) = 0. We have

θi(Π(ξi + tky)) = Θi(y) + O(tk),

ri(Π(ξi + tky)) = tkRi(y) + O(t2k),

|ξi/tk + y|1/2
= t

−1/2
k + O(1),

uniformely in y ∈ B. Thus, from the definition of si, we obtain

Ik(y) = α⋆
i

√

Ri(y) cos
Θi(y)

2
+ O(

√
tk),

For the second term, we use the fact that H2(Sδ) is embedded in the Hölder space C0,γ for 0 < γ < 1,
in particular choosing γ > 1/2, we easily obtain

IIk(y) − t
−1/2
k Σ̃⋆(ξi) = o(1),

uniformely in B and we deduce that uk − t
−1/2
k Σ̃⋆(ξi) converges to

u⋆
i (y) := α⋆

i

√

Ri(y) cos
Θi(y)

2
, in L1

loc(R
3).

We now use the following result [8]

Theorem 3.1. Every blow-up limit of a global minimizer is a global minimizer.

The pair (u⋆
i , Pi) is thus a global minimizer and since we have supposed that the list of global minimizers

was closed, the only possibility is that (u⋆
i , Pi) is a global minimizer of type (v). Consequently, we have

|α⋆
i | =

√

2/π, ∀1 ≤ i ≤ 3.

The first consequence of this equality is to exclude the case Σ⋆ symmetric (Eq. 9). Indeed, in this case,
we would have α⋆

1 = 0. Thus Σ⋆ is antisymmetric, this symmetry implies α⋆
2 = α⋆

3 and the additional
information given by the last equality may be written:

|α⋆
1| = |α⋆

2|.(12)

5th condition Let L2
0,A(Sδ) and V 1

A(Sδ) be the subspaces of antisymmetric functions in L2
0(Sδ) and

V 1(Sδ). If (5) and (10) are true, then, in particular 4/3 is an eigenvalue of the operator ∆−1
N,δ. Clearly,

L2
0,A(Sδ) is stable by the operator −∆−1

N,δ. Let us note −∆−1
N,δ,A this restriction and µa,A(δ) ≥ µ2,A(δ) ≥

· · · > 0 its eigenvalues counting multiplicities. We set λk,A(δ) := 1/µk,A(δ). For k ≥ 1, we have

λk,A(δ) := min
Vk

max

{
∫

Sδ

|∇S2| : S ∈ Vk,

∫

Sδ

S2 = 1

}

,(13)

where the minimum is taken over all k-dimensional subspaces Vk of V 1
A(Sδ).

The next results states that λ2,A(δ) ≥ 2. Consequently, (5), (6), (7) and (10) imply that

3/4 = λ1,A(δ).(14)

Proposition 3.1. For δ ∈ (0, π)3, λ2,A(δ) ≥ 2.

Proof. Let δ in (0, π)3. We have V 1
A(S(π,π,π)) ⊃ V 1(Sδ) (where S(π,π,π) := S2 \∪3

i=1Ci). Thus, from (13),

λ2,A(δ) ≥ λ2,A(π, π, π),

where for k ≥ 1,

λk,A(π, π, π) := min
Vk⊂V 1(S(π,π,π)),

dim Vk=k

max

{
∫

Sδ

|∇S2| : S ∈ Vk,

∫

Sδ

S2 = 1

}

.
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We have λ1,A(π, π, π) = 0 with associated eigenspace RΣ1 where Σ1 ≡ i on Ωi for −1 ≤ i ≤ 1. It is not
difficult to see that there is no other eigenvector in V 1

A(S(π,π,π)) which is locally constant.
Now, let Σ2 6= 0 be an eigenvector associated to λ2,A(π, π, π). We split Σ2 in Σ2 = S−1 + S0 + S1, where
suppSi ⊂ Ωi. Let us fix i such that Si 6≡ 0. This function is a non constant eigenvector of −∆ restricted
to Ωi satisfying Neumann boundary conditions, in particular

∫

Ωi
Si = 0. We set S := Si ◦ Ri, so that

suppS ⊂ Ω̄0. We also define S̄ by

S̄(x, y, z) = S(−x, y, z), ∀ (x, y, z) ∈ S(π,π,π).

We have to study two cases.
case 1: S ≡ S̄. Since S is symmetric, we can define Σ in V 1(S2) by

Σ(x, y, z) :=







S(x, y, z) if (x, y, z) ∈ Ω0,
S(R(x, y, z)) if (x, y, z) ∈ Ω−1,
S(R−1(x, y, z)) if (x, y, z) ∈ Ω1.

case 2: We set S′ := S − S̄ 6≡ 0. This function is antisymmetric, in particular S′ ≡ 0 on P . In this case,
we set:

Σ(x, y, z) :=















S′(x, y, z) if (x, y, z) ∈ Ω0,
S′(−x′, y′, z′) where (x′, y′, z′) = R(x, y, z), if (x, y, z) ∈ Ω−1 ∩ {y ≤ 0},
S′(−x′, y′, z′) where (x′, y′, z′) = R−1(x, y, z), if (x, y, z) ∈ Ω1 ∩ {y ≤ 0},
0 otherwise.

In both cases Σ ∈ V 1(S2) \ {0}, satisfies
∫

S2 Σ = 0 and
∫

S2

|∇Σ|2 = λ2,A(π, π, π)

∫

S2

Σ2.

Thus, from (4), we conclude that λ2,A(π, π, π) ≥ 2. �

Complete problem. We now collect the necessary conditions obtained in this section. If Hypothesis 1.1
is true, from (5,6,7,8,10,12 and 14), then there exists δ = (δ1, δ2, δ2) ∈ (0, π)3 such that:

3/4 = λ1,A(δ) = min

{
∫

Sδ

|∇S|2 : S ∈ V 1(Sδ),

∫

Sδ

S2 = 1, S antisymmetric

}

.(15)

Moreover, letting

Σ(δ) ∈ argmin

{
∫

Sδ

|∇S|2 : S ∈ V 1(Sδ),

∫

Sδ

S2 = 1, S antisymmetric

}

,

then the singular coefficients α1(δ), α2(δ), α3(δ) such that Σ(δ) −∑1≤i≤3 αi(δ)si ∈ H2(Sδ) satisfy

|α1(δ)| = |α2(δ)|.(16)

In the sequel, we give numerical evidences showing that there is no pair (δ, Σ(δ)) satisfying both (15)
and (16). The conclusion is that Hypothesis 1.1 is false.

4. Numerical methods

The general method is the following. Let h > 0, we choose a subdivision 0 = δh
0 < δh

1 < · · · < δh
N <

δh
N+1 = π, satisfying δh

k+1 − δh
k < h for 0 ≤ k ≤ N . Then, for every δh := (δh

k1
, δh

k2
, δh

k2
) (1 ≤ k1, k2 ≤ N),

we compute numerical approximations of λ1,A(δh) and of the coefficients αi(δ
h). Finally, we use these

values to test the validity of equalities (15) and (16).



10 BENOÎT MERLET

We use a Galerkin method to approximate λ1,A(δh). More precisely, we set

λh
1,A(δh) := min

{

∫

S
δh

|∇S2| : S ∈ V h(δh),

∫

S
δh

S2 = 1

}

,(17)

Σh(δh) ∈ argmin

{

∫

S
δh

|∇S2| : S ∈ V h(δh),

∫

S
δh

S2 = 1

}

,(18)

where V h(δh) is a finite dimensional subspace of V 1(Sδh). This space is chosen great enough such that
we may hope that λh

1,A(δh) and Σh(δh) are close to λ1,A(δh) and Σ(δh). Typically, V h(δh) is the space

of P 1 finite elements constructed on a triangular mesh of Sδh of size h.

Remark 4.1. We use the same letter (h) to denote the step size of the subdivison δh
0 < · · · < δh

N+1 and
the mesh size of the triangular mesh of Sδh . These sizes could be different but they are actually equal in
the numerical computations below.

Let (T h)h>0 be a family of regular meshes of S2 composed of geodesic triangles and with mesh size
h. We assume that the edges of T h do not cross the geodesic segments C1, C2, C3. We also assume that
R(T h) = T h and that T h is symmetric with respect to P . This last symmetry is imposed in order to
work with antisymmetric functions. We choose the subdivision 0 = δh

0 < δh
1 < · · · < δh

N < δh
N+1 = π such

that (0, sin δh
i , cos δh

i )0≤i≤N+1 are the coordinates of the nodes of T h belonging to C1.
Let h > 0. From now on, δh = (δh

k1
, δh

k2
, δh

k2
) and to lighten notations, references to δh will be omitted.

Let (pi)1≤i≤Mh be the set of nodes of T h and let Ph be the polyhedral domain of vertices (pi)i (the
boundary of the convex hull generated by (pi)i). Recall that Π is the projection of R3 \ {0} on S2. This
map defines a bijection from Ph onto S2, let us note Π−1 its inverse.
Now let (ϕ̄h

i )1≤i≤Nh be the set of continuous functions defined on Ph \ ∪3
k=1Π

−1(Mk) such that the

restriction of ϕ̄h
i on each face of Ph is linear and such that there exists 1 ≤ j(i) ≤ Mh such that

ϕ̄h
i (pj) = 1 for j = j(i), 0 otherwise.

Finally, for 1 ≤ i ≤ Nh, we set ϕh
i := ϕ̄h

i ◦Π−1 and we define the space of P 1 finite elements on Sδh to be

W̄h := span
{

ϕh
i : 1 ≤ i ≤ Nh

}

.

And then

V̄ h :=

{

ϕh ∈ W̄h :

∫

S
δh

ϕh = 0

}

.

Remark 4.2. In general, the elements of W̄h are not continuous across the geodesic segmentsM1,M2,M3.
Let us also stress that we have Nh > Mh. Indeed, if pj belongs to M1 and pj 6= ξ1 then there exists
i1 6= i2, such that ϕi1(pj) = ϕi2 (pj) = 1 and suppϕi1 ⊂ ¯Ω−1, suppϕi2 ⊂ Ω̄1.

Remark 4.3. The constant functions belong to W̄h (indeed,
∑Nh

i=1 ϕ
h
i ≡ 1) and V̄ h is the orthogonal of

1 for the L2 inner product.

Let f ∈ L2
0(Sδh) and S := ∆−1

N,δh . Since S does not necessarily belong to H2(S(δh)), the classical

convergence rates obtained for the approximation by P 1 finite elements for a similar problem on a smooth
domain are not valid here. In fact, for quasi uniform meshes, there exists c > 0, such that

min
Sh∈V̄ h

|Sh − S|H1(S
δh ) ≥ cmax

i
|αi|

√
h,

where α1, α2, α3 are the singular coefficients of S. This conclusion holds for S := Σ(δh). To overcome
this difficulty, we add the singular functions to the space of finite elements. Namely, we set:

V h := V̄ h ⊕ span{si : 1 ≤ i ≤ 3}.(19)
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This method is called Singular Functions Method (see [3, 6, 7] for a review on such methods). The usual
approximation rates (valid for smooth domains) are recovered.

min
Sh∈V h

|Sh − Σ|H1(S
δh ) ≤ Ch.

A classical result (see [10], for example) concerning the approximation of the eigenvectors of an elliptic
operator by Galerkin methods leads to

|λh
1,A(δh) − λ1,A(δh)| ≤ Ch2,

|Σh(δh) − Σ(δh)|H1(S
δh) ≤ Ch,

|Σh(δh) − Σ(δh)|L2(S
δh) ≤ Ch2.

For the approximation of the singular coefficients αi(δ
h), we use an extraction formula of Moussaoui [13]

(see also [4]). We first introduce the dual singular functions

Definition 4.1. With the notations of Definition 2.1, we define

Si(x) :=
1

2 tan
√

ri(x)/2
cos

θi(x)

2
ψ(x/ρi), for x ∈ Sδ and i = 1, 2, 3.

Now, for 1 ≤ i ≤ 3, let p̃i ∈ V 1(Sδ) be the variational solution of
{

−∆p̃i = ∆Si, in Sδ,
∂p̃i = 0, on ∂Sδ.

(20)

Finally, we set

pi := Si + p̃i, for 1 ≤ i ≤ 3.

Remark 4.4. We have ∆Si ≡ 0 on {x : ψ(x/ρi) = 0}, so ∆Si is smooth and p̃i is well defined. The
function pi does not belong to H1(Sδ) (we only have pi ∈ Hs(Sδ) for s < 1/2).

Theorem 4.1 (Moussaoui, [13]). Let f ∈ L2
0(Sδ), Σ := ∆−1

N,δf and let α1, α2, α3 be the singular coeffi-
cients of Σ. Then

αi =
1

π

∫

Sδ

pi(x)f(x)dx.

In our case, the singular coefficients αi(δ
h) are obtained by the formula above with f := λh

1,A(δh)Σ(δh).

In order to get numerical approximations of these coefficients, we first compute an approximation p̃h
i ∈ V h

of the functions p̃i. We have

|p̃h
i − p̃i|L2 ≤ Ch2, 1 ≤ i ≤ 3.

Then, we set ph
i := Si + p̃h

i and finally:

αh
i (δh) := λh(δh)

1

π

∫

S
δh

ph
i Σh

i (δh).

The numerical convergence rate is given by

|αh
i (δh) − αi(δ

h)| ≤ Ch2, 1 ≤ i ≤ 3.

Figure 4 represents the error e(h) on the computation of λ1,A(δh), α1(δ
h) and α2(δ

h) for 1/193 ≤ h ≤
1/5 and δh = (π/2, π/2, π/2). The “exact” solution is obtained with h = 1/320.

For the choice of ψ (Definitions 2.1 and 4.1), it is sufficient to have a C2 function (we have used
a piecewise polynomial function). The main obstacle for the accuracy of the numerical computations
turned out to be the restriction on ρi (Definition 2.1). If δh = (δh

1 , δ
h
2 , δ

h
2 ) is such that one of the δh

i is
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close to 0 or π, then we have to choose a very small ρi. Consequently, the function ∆Si has great values
and we need a fine mesh to get an accurate approximation of p̃i. For this reason, we have worked with
this method for δh ∈ (0.1, 3.04)3. For other values of δh, we use a method based only on finite elements
(without singular functions) described below.

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h

Figure 4. Full line: |λh
1,A(δh)−λ1,A(δh)|. Dashed line: |αh

1 (δh)−α1(δ
h)|. Dotted line:

|αh
2 (δh) − α2(δ

h)|. λ1,A(δh) ≈ 0.795, α1(δ
h) ≈ 0.54 and α2(δ

h) ≈ 0.27.

Let us fix δ ∈ (0, π)3. Let Σ+
i (δ) (resp. Σ−

i (δ)) be the west (resp. east) trace function of Σ(δh) on Mi.
From the definition of αi(δ), we have

lim
ξ∈Mi→ξi

Σ+
i (δ)(ξ) − Σ−

i (δ)(ξ)

4 tan

√

ri(ξ)

2

= ±αi(δ).(21)

(The sign ± depends on the orientation choice of Definition 2.1.)
Now let h > 0, such that it is possible to set δh = δ. Let 1 ≤ i ≤ 3, and ξh

0 , · · · , ξh
Kh

i

be the nodes of

the mesh Th belonging to Mi. We suppose that the third coordinate of the sequence (ξh)k is decreasing
(in particular ξh

0 = (0, 0, 1) and ξh
Ki

= ξi). We replace V h by V̄ h in (18) to compute an approximation

Σh
EF (δh) of Σ(δ) and we define a new approximation of the coefficient αi(δ) inspired by (21).

αh
i,EF (δ) :=

Σh,+
EF,i(δ)(ξKh

i
−1) − Σh,−

EF,i(δ)(ξKh
i
−1)

4 tan

√

ri(ξKh
i
−1)

2

,(22)

where Σh,+
EF,i(δ) and Σh,−

EF,i(δ) are the traces of Σh
EF (δh) on Mi. In fact, the coefficients αh

i,EF (δ) do not

converge to αi(δ), when h goes to 0. However, since we are concerned with the ratio |αh
2 (δh)|/|αh

1 (δh)|,
it turns out that the method makes sense. During numerical experiments, we have observed that, if we
consider a family of quasi-uniform meshes Th such that, the family of rescaled meshes 1/h × (Th − ξi)
tends to a fixed mesh Ti of the plane {x ∈ R3 : ξi · x = 1}. Then

lim
h→0

αh
i,EF (δ) = ciα

h
i (δ),(23)
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where ci is a constant depending on Ti. We did not prove this claim.
In our numerical study, the mesh has the same shape in the neighborhoods of the three points ξ1, ξ2, ξ3.

Consequently, we have c1 = c2 = c3. Thus we may consider that |αh
2,EF (δ)|/|αh

1,EF (δ)| is an approxi-

mation of |α2(δ)|/|α1(δ)|. We have compared the numerical convergence of both methods for this ratio.
Since the exact ratio is not known, we have used |αh

2 (δ)/αh
1 (δ)| on a finer mesh (h ≈ 10−3) to evaluate

the error. The numerical convergence results for the two methods are given Figure 5.

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

h

Figure 5. Upper curve:
∣

∣

∣
|αh

2,δ,EF |/|αh
1,δ,EF | − |α2,δ|/|α1,δ|

∣

∣

∣
. Lower curve:

∣

∣

∣
|αh

2,δ|/|αh
1,δ| − |α2,δ|/|α1,δ|

∣

∣

∣
. For 1/193 < h < 1/10, δ1 = π/6 and δ2 = 5π/6.

The interesting fact is that they do converge to the same limit. We will see in the next section that
the zone for which the equalities (15), (16) are the more close to be true is the neighbourhood of (δ1 = 0,
δ2 = π). For this reason, the comparison have been realized for δ1 = π/6 and δ2 = 5π/6.

5. Numerical results

We have computed Σh and αh
i with the numerical method described in the previous section for h ≈

1/40. We obtain a curve of approximate solutions of (15): δh
2 = fh(δh

1 ) (see Figures 6,7).

Remark 5.1. Let us note that for δ1 = π and δ2 = 0, the corresponding singular set is a half plane. In this
case, a global minimizer do exist: the cracktip (type (v)) and it is natural that lim(π,0) λ

h
1,A(δ1, δ2) = 3/4.

Actually, for (δ1, δ2) close to (π, 0), we observe that Σh(δ) is close to the trace of the cracktip on S2.
We also have exact values for (δ1, δ2) = (0, 0) and (δ1, δ2) = (0, π) for which λ1,A(0, 0) = 2 and

λ1,A(0, π) = 21/16 = 1.3125. In the first case, the corresponding eigenvectors are R{(x, y, z) 7→ y}. In
the second case, §δ has two connected component, the space of eigenvectors associated to 21/16 is RΣ
where Σ ≡ 0 on the small connected component and Σ(x, y, z) := (cosφ)3/4 sin(3/4θ) on the big connected
component. (The spherical coordinates (φ, θ) are defined by |θ| < 2π/3, |φ| < π/2 and (x, y, z) =
(− cosφ cos θ,− cosφ sin θ, sinφ).)

In order to check the condition (16), we compute the approximate coefficients αh
i (δh) for h ≈ 1/40 and

0.14 . δ1, δ2 . 3. To complete the study we have computed the alternative approximations of the ratio
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0
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1
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2

δ1
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λ
h 1
,A

(δ
)

Figure 6. Values of λh
δ for h =

1/40 and 0.14 . δ1, δ2 . 3 .

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

δ1 = fh(δ2)

δ 2

Figure 7. Curve δh
1 := fh(δh

2 ), h = 1/160.

|α2,δ|/|α1,δ| given by |αh
2,EF (δh)|/|αh

1,EF (δh)| for h ≈ 1/160 on the curve {(fh(δh
1 ), δh

2 ) : 0 < δh
2 < π}

(Figure 8). In both cases, we have

|αh
2 (δ)|/|αh

1 (δ)| ≤ 0.8,

for any couple (δh
1 , δ

h
2 ) of the discretizations. This inequality contradicts (16).

For both methods, the numerical error is less than 1/100 (see Figure 5). This numerical error is small
compared to the distance between 0.8 and 1. We conclude that there is no value 0 < δ1, δ2 < π for
which (15) and (16) are both satisfied. Consequently, we are convinced that Hypothesis 1.1 was wrong.

Remark 5.2. We observe that α1(δ) converges to 0 when δ1 tends to 0 so that solutions of (16) do exist,
but in this case δ1 < f(δ2) and λ1,A(δ) > 3/4.

Remark 5.3. Since no solution has been found, we have removed the symmetry condition δ2 = δ3. Again
we do not find any non zero eigenvector Σ = −4/3∆−1

N,δΣ whose singular coefficients satisfy |α1| = |α2| =

|α3|.

6. Conclusion

The above numerical experiments show that Hypothesis 1.1 is certainly wrong. The first consequence
is that we still don’t know the shape of the singular set of a minimizer in the situation of Figures 1,2.
One possibility is that the true singular set is topologically equivalent to the one of Figure 2 but with
edges tangent to γ at γ(1) (see Figure 9 below).

For the moment, this new hypothesis is a conjecture. If it were true, the singular set of a blow-up
limit at γ(1) would be a half plane and one may expect that the associated global minimizer would be a
cracktip (type (v)). In this case there is no need to add a new type of global minimizers to the existing
list in order to explain Figure 9. However one may wonder if there exists a global minimizer whose
singular set is locally diffeomorphic to the one of Figure 9. Such a global minimizer would not be blow-up
invariant.
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Figure 8. Surface: values of |αh
2 , (δ

h)|/|αh
1 (δh)| for h ≈ 1/40. Black line: values of

|αh
2,EF (δh)|/|αh

1,EF (δh)| for h = 1/250.

Another consequence of this negative result is that taking blow-up limit at γ(1), we cannot discrimate
a surface with a smooth boundary and the surface above. Thus it seems now more difficult to use the
information on global minimizers to deduce some regularity for the singular sets of minimizers.

γ

γ(1)

Figure 9.
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528, 1996.
[3] M. Bourlard, M. Dauge, M.S Lubuma, and S. Nicaise. Coefficients of the singularities for elliptic boundary value

problems on domains with conical points. III. Finite element methods on polygonal domains. SIAM J. Numer. Anal.,
29(1):136–155, 1992.



16 BENOÎT MERLET
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