A New Domain Decomposition Method for the Compressible Euler Equations - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2006

A New Domain Decomposition Method for the Compressible Euler Equations

Résumé

In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The basis is the equivalence via the Smith factorization with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be preserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ....).
Fichier principal
Vignette du fichier
newddm.pdf (240.57 Ko) Télécharger le fichier

Dates et versions

hal-00004319 , version 1 (22-02-2005)

Identifiants

Citer

Victorita Dolean, Frédéric Nataf. A New Domain Decomposition Method for the Compressible Euler Equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2006, 40 (4), pp.689-703. ⟨hal-00004319⟩
285 Consultations
121 Téléchargements

Altmetric

Partager

More