
HAL Id: hal-00004319
https://hal.science/hal-00004319v1

Submitted on 22 Feb 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Domain Decomposition Method for the
Compressible Euler Equations

Victorita Dolean, Frédéric Nataf

To cite this version:
Victorita Dolean, Frédéric Nataf. A New Domain Decomposition Method for the Compressible Euler
Equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2006, 40 (4), pp.689-703. �hal-
00004319�

https://hal.science/hal-00004319v1
https://hal.archives-ouvertes.fr

cc
sd

-0
00

04
31

9,
 v

er
si

on
 1

 -
 2

2
Fe

b
20

05

A New Domain Decomposition Method for the Compressible

Euler Equations

V. Dolean∗, F. Nataf†

22nd February 2005

Abstract

In this work we design a new domain decomposition method for the Euler equations in 2 dimen-
sions. The basis is the equivalence via the Smith factorization with a third order scalar equation to
whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-
diffusion equation. Afterwards we translate it into an algorithm for the initial system and prove
that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations.
This property cannot be preserved strictly at discrete level and for arbitrary domain decompositions
but we still have numerical results which confirm a very good stability with respect to the various
parameters of the problem (mesh size, Mach number, . . .).

Contents

1 Introduction 2

2 A third order scalar problem 2

2.1 The compressible 2D Euler equations . 3
2.2 Equivalence of the Euler system to a scalar equation . 3

2.2.1 Smith factorization . 3

3 A new algorithm applied to a scalar third order problem 5

3.1 The algorithm for a two-domain decomposition . 5

4 A new algorithm applied to the Euler system 7

5 Discretization 9

5.1 A finite volume discretization . 9
5.2 Discretizations of the interface conditions . 10

6 Numerical results 11

7 Conclusion 15

References 15

∗Univ. d’Évry and CMAP, Ecole Polytechnique, 91128 Palaiseau, France, dolean@cmap.polytechnique.fr
†CMAP, CNRS UMR 7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France, nataf@cmap.polytechnique.fr

1

1 Introduction

The need of using domain decomposition methods when solving partial differential equations is nowadays
more and more obvious. The challenge is now the acceleration of these methods. Different possibilities
were studied such as the use of optimized interface conditions on the artificial boundaries between subdo-
mains or the preconditioning of a substructured system defined at the interface. The former were widely
studied and analyzed for scalar problems such as elliptic equations in [Lio90, EZ98], for the Helmholtz
equation in [BD97, CN98, GMN01, LVL05] convection-diffusion problems in [JNR01]. For time depen-
dent problems and local times steps, see for instance [GHN01, GH03]. The preconditioning methods
have also known a wide developpement in the last decade. The Neumann-Neumann algorithms for sym-
metric second order problems [BGLTV89, Man92, RT91] has been the subject of numerous works, see
[TW04] and references therein. An extension of these algorithms to non-symmetric scalar problems (the
so called Robin-Robin algorithms) has been done in [ATNV00, GGTN04] for advection-diffusion problems.

The generalization of these kinds of methods to the system of the Euler equations is difficult in the
subsonic case in dimensions equal or higher to two. As far as Schwarz algorithms are concerned, when
dealing with supersonic flows, whatever the space dimension is, imposing the appropriate characteristic
variables as interface conditions leads to a convergence of the algorithm which is optimal with regards
to the number of subdomains. This property is generally lost for subsonic flows except for the case of
one-dimensional problems, where the optimality is expressed by the fact that the number of iterations
is equal to the number of subdomains (see Bjørhus [Bjø95] and Quarteroni [Qua90] for more details).
In the subsonic case and in two or three dimensions, we can find a formulation with classical (natural)
transmission conditions in [Qua90, CFS98, QS96] or with more general interface conditions in [Cle98] and
optimized transmission conditions in [DN04]. The analysis of such algorithms applied to systems proved
to be very different from the scalar case, see [DLN02, DLN04]. As far as preconditioning methods are
concerned, to our knowledge, no extension to the Euler equations was done.

In this paper, we consider a preconditioning technique for the system of the compressible Euler
equations in the subsonic case. The paper is organized as follows: in Section 2 we will first show the
equivalence between the 2D Euler equations and a third order scalar problem, which is quite natural by
considering a Smith factorization of this system, see [WRL95] or [Gan66c]. In Section 3 we define an
optimal algorithm for the third order scalar equation. It is inspired from the idea of the Robin-Robin
algorithm [ATNV00] applied to a convection-diffusion problem. We also prove by using a Fourier analysis
that this algorithm converges in two iterations. Afterwards in Section 4 we back-transform it and define
the corresponding algorithm applied to the Euler system. All the previous results have been obtained at
the continuous level and for a decomposition into 2 unbounded subdomains. After a discretization in a
bounded domain we cannot expect that these properties to be preserved exactly. Still we can show in
Section 5 by a discrete convergence analysis that the expected results should be very good. In Section 6,
numerical results confirm the very good stability of the algorithm with respect to the various parameters
of the problem (mesh size, Mach number, . . .).

2 A third order scalar problem

In this section we will show the equivalence between the linearized Euler system and a third order scalar
equation. The motivation for this transformation is that a new algorithm is easier to design for a scalar
equation than for a system of partial differential equations.

2

2.1 The compressible 2D Euler equations

In the following we will concentrate ourselves on the conservative Euler equations in two-dimensions:

(2.1)
∂W

∂t
+ ∇.F (W) = 0 , W = (ρ, ρV , E)

t
.

In the above expressions, ρ is the density, V = (u, v)t is the velocity vector, E is the total energy per unit
of volume and p is the pressure. In equation (2.1), W = W (x, t) is the vector of conservative variables, x

and t respectively denote the space and time variables and F (W) = (F1(W), F2(W))T is the conservative
flux vector whose components are given by

F1(W) =
(

ρu, ρu2 + p, ρuv, u(E + p)
)t

, F2(W) =
(

ρv, ρuv, ρv2 + p, v(E + p)
)t

.

The pressure is deduced from the other variables using the state equation for a perfect gas p = (γs −
1)(E − 1

2ρ ‖ V ‖2) where γs is the ratio of the specific heats (γs = 1.4 for the air).

2.2 Equivalence of the Euler system to a scalar equation

The starting point of our analysis is given by the linearized form of the Euler equations (2.1) written in
primitive variables (p, u, v, S). In the following we suppose that the flow is isentropic, which allows us to
drop the equation of the entropy (which is totally decoupled with respect to the others). We denote by
W = (P, U, V)T the vector of unknowns and by A and B the jacobian matrices of the fluxes Fi(w) to
whom we already applied the variable change from conservative to primitive variables. In the following,
we shall denote by c̄ the speed of the sound and we consider the linearized form (we will mark by the bar
symbol, the constant state around which we linearize) of the Euler equations:

(2.2) PW ≡
W

∆t
+ A∂xW + B∂yW = f

characterized by the following jacobian matrices:

(2.3) A =

ū ρ̄c̄2 0

1/ρ̄ ū 0

0 0 ū

B =

v̄ 0 ρ̄c̄2

0 v̄ 0

1/ρ̄ 0 v̄

We can re-write the system (2.2) by denoting β = 1
∆t > 0 under the form

(2.4) PW ≡ (βI + A∂x + B∂y)W = f

We will study this system with the help of the Smith factorization.

2.2.1 Smith factorization

We first recall the definition of the Smith factorization of a matrix with polynomial entries and apply it
to systems of PDEs, see [Gan66b, Gan66a, Gan98] or [WRL95] and references therein.

Theorem 1 Let n be an integer and C an invertible n×n matrix with polynomial entries in the variable
λ : C = (cij(λ))1≤i,j≤n.
Then, there exist three matrices with polynomial entries E, D and F with the following properties:

• det(E)=det(F)=1

3

• D is a diagonal matrix.

• C = EDF .

Moreover, D is uniquely defined up to a reordering and multiplication of each entry by a constant by a
formula defined as follows. Let 1 ≤ k ≤ n,

• Sk is the set of all the submatrices of order k × k extracted from C.

• Detk = {Det(Bk)\Bk ∈ Sk}

• LDk is the largest common divisor of the set of polynomials Detk.

Then,

(2.5) Dkk(λ) =
LDk(λ)

LDk−1(λ)
, 1 ≤ k ≤ n

(by convention, LD0 = 1).

Application to the Euler system We first take formally the Fourier transform of the system (2.4)
with respect to y (the dual variable is ξ). We keep the partial derivatives in x since in the sequel we shall
consider a domain decomposition with an interface whose normal is in the x direction. We note

(2.6) P̂ =

β + ū∂x + iξv̄ ρ̄c̄2∂x iρ̄c̄2ξ
1
ρ̄∂x β + ū∂x + iξv̄ 0
iξ
ρ̄ 0 β + ū∂x + iv̄ξ

We can perform a Smith factorization of P̂ by considering it as a matrix with polynomials in ∂x

entries. We have

(2.7) P̂ = EDF

where

(2.8) D =

1 0 0
0 1 0

0 0 L̂Ĝ

and

E =
1

(ū(c̄2 − ū2))1/3

iρ̄c̄2ξ 0 0
0 ū 0

β + ū∂x + iv̄ξ E2
c̄2 − ū2

iξρ̄c̄2

and

(2.9) F = −

β + ū∂x + iξv̄

iξρ̄c̄2

∂x

iξ
1

∂x

ρ̄ū

β + ū∂x + iξv̄

ū
0

ū

β + iξv̄

ρ̄ū2

β + iξv̄
0

where

E2 = ū
(−ūc̄2 + ū3)∂xx + (2ū2 − c̄2)(β + iξv̄)∂x + ū((β + iξv̄)2 + ξ2c̄2)

c̄2(iβ + iξv̄)
,

4

(2.10) Ĝ = β + ū∂x + iξv̄

and

(2.11) L̂ = β2 + 2iξūv̄∂x + 2β(ū∂x + iξv̄) + (c̄2 − v̄2)ξ2 − (c̄2 − ū2)∂xx

The operators showing up in the diagonal matrix have a physical meaning:

G = β + ū∂x + v̄∂y

is a first order transport operator where the time derivative is replaced by β and

L = β2 + 2ūv̄∂xy + 2β(ū∂x + v̄∂y) − (c̄2 − v̄2)∂yy − (c̄2 − ū2)∂xx

is the advective wave operator where ∂l
t is replaced by βl for l = 1, 2.

Equation (2.8) suggests that the derivation of a domain decomposition method (DDM) for the third
order operator LG is a key ingredient for a DDM for the compressible Euler equations.

3 A new algorithm applied to a scalar third order problem

In this section we will describe a new algorithm applied to the third order operator found in section 2.
We want to solve

(3.1) LG(Q) = g

where Q is scalar unknown function and g is a given right hand side. The algorithm will be based on
the Robin-Robin algorithm [AN97, ATNV00] for the convection-diffusion problem. Then we will prove
its convergence in 2 iterations. We first note that the elliptic operator L can also be written as:

(3.2) L = −div(A∇) + a∇ + β2, A =

(

c̄2 − ū2 −ūv̄
−ūv̄ c̄2 − v̄2

)

where a = 2β(ū, v̄)

Without loss of generality we assume in the sequel that the flow is subsonic and that ū > 0 and thus we
have 0 < ū < c̄.

3.1 The algorithm for a two-domain decomposition

We consider now a decomposition of the plane R2 into two non-overlapping sub-domains Ω1 = (−∞, 0)×R

and Ω2 = (0,∞, 0) × R. The interface is Γ = {x = 0}. The outward normal to domain Ωi is denoted ni,
i = 1, 2. Let Qi,k, i = 1, 2 represent the approximation to the solution in subdomain i at the iteration k
of the algorithm. We define the following algorithm:

ALGORITHM 1 We choose the initial values Q1,0 and Q2,0 such that GQ1,0 = GQ2,0 and we compute
(Qi,k+1)i=1,2 from (Qi,k)i=1,2 by the following iterative procedure:

Correction step We compute the corrections Q̃1,k and Q̃2,k as solution of the homogeneous local prob-
lems:

(3.3)

LGQ̃1,k = 0 in Ω1,

(A∇− 1
2a)GQ̃1,k · n1 = γk, on Γ.

LGQ̃2,k = 0 in Ω2,

(A∇− 1
2a)GQ̃2,k · n2 = γk, on Γ,

Q̃2,k = 0, on Γ.

5

where γk = − 1
2

[

A∇GQ1,k · n1 + A∇GQ2,k · n2

]

.
Update step.We update Q1,k+1 and Q2,k+1 by solving the local problems:

(3.4)

{

LGQ1,k+1 = g, in Ω1,

GQ1,k+1 = GQ1,k + δk, on Γ.

LGQ̃2,k+1 = g, in Ω2,

GQ2,k+1 = GQ2,k + δk, on Γ,

Q2,k+1 = Q1,k + Q̃1,k, on Γ.

where δk = 1
2

[

GQ̃1,k + GQ̃2,k
]

.

Proposition 1 Algorithm 1 converges in 2 iterations.

Proof We use the Fourier transform technique. For the sake of the analysis we consider the previous
algorithm written in term of error vector ei,k(x, y) = (Qi,k − Q|Ωi

)(x, y). The error (ei,k)i=1,2 satisfies
Algorithm 1 with g = 0.
We will first describe what happens locally inside each subdomain after proceeding to a Fourier transform
in the y direction and then we prove the convergence of the algorithm 1 by computing in Fourier space
the effect of the correction and the update steps. We denote by ê(x, ξ) the Fourier transform of a function
e(x, y):

ê(x, ξ) =

∫

R

e(x, y)e−iξydy

We first study solutions to the homogeneous equation LG(ei) = 0 in domain Ωi, i = 1, 2. We take its
Fourier in the y direction and get:

(3.5) L̂Ĝêi = (β + ū∂x + iξv̄) ((ū2 − c̄2)∂xx + 2ū(β + iξv̄)∂x + ξ2 + (β + iξv̄)2)êi = 0

We seek the solution in the form êi(x, ξ) = eλ(ξ)x.and we find three possible values for λ:

(3.6) λ1,2(ξ) =
ū(β + iξv̄) ± c̄

√

(β + iξv̄)2 + ξ2(c̄2 − ū2))

c̄2 − ū2
, λ3(ξ) = −

β + iξv̄

ū
.

therefore the solution writes êi(x, ξ) = α1i(ξ)e
λ1(ξ)x + α2i(ξ)e

λ2(ξ)x + α3i(ξ)e
λ3(ξ)x. We also impose that

ê1 (resp. ê2) is bounded as x tends to −∞ (resp. ∞). Taking into account the sign of the real parts of
(λj)j=1,2,3 it means that we have:

(3.7) ê1(x, ξ) = α1e
λ1(ξ)x and ê2(x, ξ) = α2e

λ2(ξ)x + α3e
λ3(ξ)x

In order to ease the notations we call:

(3.8) a(ξ) = β + iξv̄ and R(ξ) =
√

(β + iξv̄)2 + ξ2(c̄2 − ū2)

The initial guesses of the algorithm does not satisfy a specific partial differential equation. Therefore, it
is possible to use formula (3.7) only for k ≥ 1. With obvious notations, we write:

(3.9) ê1,k(x, ξ) = αk
1eλ1(ξ)x and ê2,k(x, ξ) = αk

2eλ2(ξ)x + αk
3eλ3(ξ)x

and we have also

(3.10) ˆ̃e1,k(x, ξ) = α̃k
1eλ1(ξ)x and ˆ̃e2,k(x, ξ) = α̃k

2eλ2(ξ)x + α̃k
3eλ3(ξ)x

Using, Ĝê1,1 = Ĝê2,1 we get:

(3.11) αΓ := α1
1(a(ξ)c̄ + ūR(ξ)) = α1

2(a(ξ)c̄ − ūR(ξ))

6

Now we estimate the Fourier transform of the correction ẽ. By using (3.10) in the interface conditions of
the correction step (3.3), we first get γ̂1 = iξαΓR(ξ) and then:

(3.12) α̃1
1 = −

αΓ

a(ξ) + ūR(ξ)
, α̃1

2 = −
αΓ

a(ξ)c̄ − ūR(ξ)
, α̃1

3 =
iξ(c̄2 − ū2)

a(ξ)
·

αΓ

a(ξ)c̄ − ūR(ξ)

Now we estimate the Fourier transform of the update e. By using (3.9) and (3.10) in the interface condi-

tions of the update step (3.4), we first get that Ĝê1,1 + δ̂1 = Ĝê2,1 + δ̂1 = 0 and ê1,1 + ˆ̃e1,1 = 0 on Γ. This
means that the coefficients (α2

i)1≤i≤3 satisfy homogeneous systems of linearly independent equations.
Therefore α2

i = 0 for i = 1, 2, 3 and then ê1,2 = ê2,2 = 0. Therefore, the convergence is achieved in two
steps.

4 A new algorithm applied to the Euler system

After having found an optimal algorithm which converges in two steps for the third order model problem,
we focus on the Euler system by translating this algorithm into an algorithm for the Euler system. It
suffices to replace the operator LG by the Euler system and Q by the last component F (W)3 of F (W)
in the boundary conditions. The algorithm reads:

ALGORITHM 2 We choose the initial values W 1,0 and W 2,0 such that GF (W 1,0)3 = GF (W 2,0)3 and
we compute (W i,k+1)i=1,2 from (W i,k)i=1,2 by the following iterative procedure:

Correction step We compute the corrections W̃ 1,k and W̃ 2,k as solution of the homogeneous local
problems:

(4.1)

PW̃ 1,k = 0 in Ω1,

(A∇− 1
2a)GF (W̃ 1,k)3 · n1 = γk, on Γ.

PW̃ 2,k = 0 in Ω2,

(A∇− 1
2a)GF (W̃ 2,k)3 · n2 = γk, on Γ,

F̃ (W 2,k)3 = 0, on Γ.

where γk = − 1
2

[

A∇GF (W 1,k)3 · n1 + A∇GF (W 2,k)3 · n2

]

.
Update step.We update W 1,k+1 and W 2,k+1 by solving the local problems:
(4.2)

{

PW 1,k+1 = f, in Ω1,

GF (W 1,k+1)3 = GF (W 1,k)3 + δk, on Γ.

PW̃ 2,k+1 = f, in Ω2,

GF (W 2,k+1)3 = GF (W 2,k)3 + δk, on Γ,

F (W 2,k+1)3 = F (W 1,k)3 + F (W̃ 1,k)3, on Γ.

where δk = 1
2

[

GF (W̃ 1,k)3 + GF (W̃ 2,k)3

]

.

This algorithm is quite complex since it involves second order derivatives of the unknowns in the boundary
conditions on GF (W)3. It is possible to simplify it. By using the Euler equations in the subdomain, we
have lowered the degree of the derivatives in the boundary conditions. After lengthy computations that
we omit here, we find a simpler algorithm. We write it for a decomposition in two subdomains with an
outflow velocity at the interface of domain Ω1 but with an interface not necessarily rectilinear. In this
way, it is possible to figure out how to use for a general domain decomposition.

In the sequel, n = (nx, ny) denotes the outward normal to domain Ω1, ∂n = ∇ · n the normal
derivative at the interface, ∂τ = ∇· τ the tangential derivative, Un = Unx + V ny and Uτ = −Uny + V nx

are respectively the normal and tangential velocity at the interface between the subdomains. Similarly,
we denote ūn (resp. ūτ) the normal (resp. tangential) component of the velocity around which we have
linearized the equations.

7

ALGORITHM 3 We choose the initial values W i,0 = (P i,0, U i,0, V i,0), i = 1, 2 such that P 1,0 = P 2,0

and we compute W i,k+1 from W i,k by the iterative procedure with two steps:
Correction step We compute the corrections W̃ 1,k and W̃ 2,k as solution of the homogeneous local
problems:

(4.3)

PW̃ 1,k = 0, in Ω1,

−(β + ūτ∂τ)Ũ1,n
n + ūn∂τ Ũ1,k

τ = γk, on Γ.

PW̃ 2,k = 0, in Ω2,

(β + ūτ∂τ)Ũ2,k
n − ūn∂τ Ũ2,k

τ = γk, on Γ

P̃ 2,k + ρ̄ūnŨ2,k
n = 0, on Γ.

where γk = − 1
2

[

(β + ūτ∂τ)(U2,k
n − U1,k

n) + ūn∂τ (Ũ1,k
τ − Ũ2,k

τ)
]

.

Update step.We compute the update of the solution W 1,k+1 and W 2,k+1 as solution of the local problems:

(4.4)

{

PW 1,k+1 = f1, in Ω1,

P 1,k+1 = P 1,k + δk, on Γ.

PW 2,k+1 = f2, in Ω2,

P 2,k+1 = P 2,k + δk, on Γ,

(P + ρ̄ūnUn)2,k+1 = (P + ρ̄ūnUn)1,k + (P̃ + ρ̄ūnŨn)1,k, on Γ.

where δk = 1
2

[

P̃ 1,k + P̃ 2,k
]

.

Proposition 2 For a domain Ω = R2 divided into two non overlapping half planes, algorithms 2 and 3
are equivalent and both converge in two iterations.

Proof The Euler equations are invariant with respect to rotations so we can write at the interface the
equations (2.4) in the referential given by (n, τ). We simply have to replace ∂x(resp. ∂y) by ∂n(resp. ∂τ),

U (resp. V) by Un (resp. Uτ) and ū (resp. v̄) by ūn (resp. ūτ). We denote by Q̂ the Fourier transform
along the interface of a function Q and ξ is the dual variable.
We first consider the boundary conditions (4.2) of Algorithm 2 and prove that they correspond to the
ones (4.4) of Algorithm 3. First of all, from (2.9), we have:

(4.5) F̂ (W)3 = −
1

β + iξūτ
(ūnP̂ + ρ̄ū2

nÛn)

We apply now the operator Ĝ and get:

(4.6) Ĝ(F̂ (W)3) = −
ūn

β + iξūτ
(Ĝ(P̂) + ρ̄ūnĜ(Ûn))

By using the Euler equations satisfied by W we can substitute Ĝ(Ûn) with −1/ρ̄∂nP̂ (we can omit the
right handside since it will appear on both sides of the boundary condition) and obtain:

(4.7) Ĝ(F̂ (W)3) = −
ūn

β + iξūτ
(Ĝ(P̂) − ūn∂nP̂) = −

ūn

β + iξūτ
(iūτξ + β)(P̂) = −ūnP̂ .

Therefore, boundary condition of (4.2) on the boundary of domain Ω1 reads:

(4.8) ūnP̂ 1,k+1 = ūn

(

P̂ 1,k +
1

2
(ˆ̃P 1,k + ˆ̃P 2,k)

)

By simplifying with ūn, we get the boundary condition of (4.4) on the pressure on the boundary of
domain Ω1.

8

We now show how to obtain the second boundary condition in domain Ω2 both in the update step (4.4)
and in the correction step (4.3). From (4.5), we infer:

(4.9)
1

β + iξūτ
(ūnP̂ 2,k+1 + ρ̄ū2

nÛ2,k+1
n) =

1

β + iξūτ
(ūnP̂ 1,k + ρ̄ū2

nÛ1,k
n + ūn

ˆ̃P 1,k + ρ̄ū2
n

ˆ̃U1,k
n)

Multiplying by (β + iξūτ)/ūn, we obtain the second boundary condition of (4.3) and of (4.4).
We now derive the first boundary condition of the correction step (4.3) from the corresponding boundary
condition of (4.1). We have to consider

(4.10) B(W) := (A∇−
1

2
a)GF (W̃)3

From (3.2) and (4.7), we have:

(4.11) B̃(W) = −ūn((c̄2 − ū2
n)∂n − ūn(β + iūτξ))(P̂)

In order to replace the normal derivative on P , we write the Euler system in the form:

(4.12) ∂xW = −A−1(βW + B∂yW − f)

We get (once again omitting the right hand side f that will appear on both sides of the boundary
conditions):

(4.13) ∂nP =
ūn

ū2
n − c̄2

[−ūn(β + ūτ∂τ)(P) + ρ̄c̄2(β + ūτ∂τ)(Un) − ūnρ̄c̄2∂τ (Uτ)]

Using this equation in (4.10),

(4.14) B(W) = −ūnρ̄c̄2[(β + ūτ∂τ)(Un) − ūn∂τ (Uτ)]

To obtain the first boundary condition of the correction step (4.3), it suffices to multiply (4.1) by −ūnρ̄c̄2.
This shows the equivalence of both algorithms. The convergence in two steps comes from the fact that
Algorithm 2 was derived directly from Algorithm 1 which converges in two steps.

5 Discretization

In this section we will first present the discretization method used, a finite volume method on a uniform
grid. Then we propose a strategy of discretization of the boundary conditions of the algorithm 3 applied
to the Euler system and we present some theoretical discrete estimates of the convergence of the method.

5.1 A finite volume discretization

We consider a domain Ω and the boundary value problem associated to (2.4) with classical(natural)
boundary conditions (see [DLN04]) on ∂Ω. This BVP is discretized using a finite volume scheme where
the flux at the interface of the finite volume cells is computed using a Roe type solver. We recall the
method already described in [DN04]. In order to discretize the BVP we consider a regular quadrilateral
grid where a vertex vij is characterized by

vij =

((

i −
1

2

)

∆x,

(

j −
1

2

)

∆y

)

, i, j ∈ Z

We associate to each vertex a finite volume cell, Cij = [(i − 1)∆x , i∆x] × [(j − 1)∆x , j∆x] which is
a rectangle having as a center the vertex vij . A first order vertex centered finite volume formulation
simply writes:

(5.1)
Wi,j

c∆t
+

1

|Cij |

∑

e∈∂Cij

|e|Φe = f,

9

where |Cij | denotes the area of the cell Cij , |e| the length of the edge e and Wi,j the average value of the
unknown on the cell Cij

Wi,j =
1

|Cij |

∫

Cij

W (x, y)dxdy.

Here, the elementary flux Φe
ij across edge |e| is computed by a Roe type scheme Φe = A+

n Wi,j + A−
n Wk,l,

where n = (nx , ny) is the outward normal to the the edge e, An = nxA1 + nyA2 and Ckl is the
neighboring cell of Cij sharing the edge e with it. We can rewrite (5.1) as

(5.2)
Wij

c∆t
+

|A1|Wi,j + A−
1 Wi+1,j − A+

1 Wi−1,j

∆x
+

|A2|Wi,j + A−
2 Wi,j+1 − A+

2 Wi,j−1

∆y
= f.

We will further denote ∆̄x =
∆x

c∆t
and ∆̄y =

∆y

c∆t
, the non dimensioned counterpart of the mesh size in

x and y directions.

5.2 Discretizations of the interface conditions

In the following we consider the discretization of the interface conditions. In order to do that we will first
write the semi-discrete system (only in the y direction):

(5.3)

βPj + ū∂xPj + DmyPj + ρ̄c̄2∂xUj + ρ̄c̄2DpyVj = f1

βUj + ū∂xUj + v̄D−
y Uj +

1

ρ̄
∂xPj = f2

βVj + ū∂xVj + DmyVj +
1

ρ̄
DpyPj = f3

where

Dmy =

[

c̄ + v̄

2
D−

y −
c̄ − v̄

2
D+

y

]

, Dpy =

[

c̄ + v̄

2
D−

y +
c̄ − v̄

2
D+

y

]

where we Mn = ū
c̄ and Mt = v̄

c̄ are the normal and the tangential Mach number and D±
y are the usual

finite difference operators. When writing the discrete counterpart of the algorithm 3, there is no need for
a special treatment in the update step since the boundary conditions do not involve any derivatives. But
one has to take care of the discretization of the interface conditions in the correction step. For this, we
proceed as in the proof of proposition 2 but at the semi-discrete level (5.3). First of all, from (5.3) we
obtain the discrete counterpart of (4.13)

(5.4) ∂nP =
ūn

ū2
n − c̄2

[−ūn(β + ūτDmy)(P) + ρ̄c̄2(β + ūτD−
y)(Un) − ūnρ̄c̄2Dpy(Uτ)]

and then by replacing it into (4.11) we obtain

(5.5) Bdis(W) = ūnρ̄c̄2[−(β + ūτD−
y)(Un) + ūnDpy(Uτ) + ūn(ūτ∂y −Dmy)P̄].

which suggests the use of the classical finite difference operator D−
y for the normal components of the

velocity and Dpy for the tangential one. Nevertheless, the question that remains open is which kind of
approximation we should use for the pressure term. The most natural one is to cancel the pressure term.
We will see in the discrete analysis that follows that it may lead to a diverging algorithm. Therefore, we
will not completely drop this part but consider also the discretization of (ūτ∂y −Dmy)P̄ by ∆yD+

y D−
y P̄ .

As we shall see below, it leads to a converging algorithm. We say then that we have a stabilized algorithm.

10

Theoretical discrete convergence results We will proceed to a discrete convergence analysis as in
[DN04] in order to decide which discretization of the boundary conditions is better. We will recall briefly
the key ingredients of this analysis. We perform a discrete Fourier transform, by looking for the solution
under the form:

(5.6) Wi,j =
∑

ξ

3
∑

l=1

αξle
(i− 1

2)λl(ξ)∆xeIjξ∆yVl(ξ)

where I2 = −1. By introducing this expression into the discrete equation we get that for each ξ, λl(ξ)
and Vl(ξ) have to be the solution of

(

Id +
|A1| + A−

1 eλl(ξ)∆x − A+
1 e−λl(ξ)∆x

∆x
+

|A2| + A−
2 eIξ∆y − A+

2 e−Iξ∆y

∆y

)

Vl(ξ) = 0.

If we denote by Ll(ξ) = e−λl(ξ)−1
∆x and by ey(ξ) = eIξ∆y−1

∆x , we can further solve this systems numerically
for each wave-number ξ. By introducing these expressions in the interface conditions, we get the discrete
convergence rate.

0

2

4

6

8

10

20 40 60 80 100 120 140 160 180 200 220 240 260 280

Figure 1: Convergence rate vs. Fourier number ξ for different values of the normal Mach number, no
stabilization used

0

0.05

0.1

0.15

0.2

20 40 60 80 100

Figure 2: Convergence rate vs. Fourier number ξ for different values of the normal Mach number, with
stabilization term

In figures 1 and 2, we show for a flow normal to the interface the convergence rate as a function of the
wavenumber ξ along the interface. Two possibilities are considered: no stabilization and the stabilization
mentioned above. These figures show the we need of the stabilization term for the high wavenumbers.

6 Numerical results

We compare the proposed method with the stabilization term and the classical method defined in [CFS98]
or [DLN04] involving interface conditions that are derived naturally from a weak formulation of the

11

Mn Classical New DDM Mn Classical New DDM
0.001 67 18 0.4 25 14
0.01 66 16 0.5 20 14
0.1 55 14 0.6 16 14
0.2 41 16 0.7 13 12
0.3 32 16 0.8 15 14

Table 1: Subdomain solves counts for different values of Mn

underlying boundary value problem. We present here a set of results of numerical experiments on a
model problem. We consider a decomposition into different number of subdomains and for a linearization
around a constant or non-constant flow. The computational domain is given by the rectangle [0 , 4]×[0 , 1]
with a uniform discretization using 80 × 20 points. The numerical investigation is limited to the solving
of the linear system resulting from the first implicit time step using a Courant number CFL=100. For
all tests, the stopping criterion was a reduction of the maximum norm of the error by a factor 10−6. We
consider first a decomposition into 2 subdomains and a linearization around a constant state and we are
solving the homogeneous equations satisfied by the error vector at the first time step. In the following, for
the new algorithm, each iteration counts for 2 as we need to solve twice as much local problems than with
the classical algorithm. For an easier comparison of the algorithms, the figures shown in the tables are the
number of subdomains solves. Table 1 summarizes the number of subdomains solves for different values
of the reference Mach number for the new and the classical algorithm for a normal flow to the interface
Mt = 0.0. The same results are presented in figure 3. In Table 2, we consider a linearization around a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

Mn

Ite
r

Subdomain solves for 2 subdomains, Mt=0.0, eps=1.0e−6

Classical alg.
New algorithm

Figure 3: Subdomain solves counts for different values of Mn

variable state where the tangential velocity is given by Mt(y) = 0.1(1 + cos(πy)) and we vary the normal
Mach number. In figure 4, we linearize the equations around a variable state for a normal flow to the
interface (Mt = 0.0), where the initial normal velocity is gives by Mn(y) = 0.5(0.2 + 0.04 tanh(y/0.2))).
The sensitivity to the mesh size is shown in the Table 3. We can see that for the new algorithm the
growth in the number of iterations is very weak as the mesh is refined, the same property being already
known for the classical one. The next tests concern a decomposition into 3 subdomains. We first consider
a linearization around a constant state. Table 5 gives the results for different values of the reference Mach
number for the new and the classical algorithm. The same results are presented in figure 5. In figure
6, we consider for a three subdomains decomposition a linearization around a variable state for a normal

12

Mn Classical New DDM Mn Classical New DDM
0.001 32 16 0.4 18 14
0.01 30 16 0.5 16 12
0.1 28 14 0.6 15 12
0.2 24 14 0.7 14 12
0.3 20 14 0.8 14 14

Table 2: Subdomain solves counts for different values of Mn, Mt(y)

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

No. Iter

E
rr

or

Convergence history: classic vs. new algorithm

Classical Ovr.
New algorithm

Figure 4: Convergence curves for the classical and the new algorithms

h (Mn = 0.001) Classical New DDM h (Mn = 0.1) Classical New DDM
1/10 65 18 1/10 56 12
1/20 67 18 1/20 57 14
1/40 70 18 1/40 59 16

Table 3: Subdomain solves counts for different mesh size

Table 4: Classical vs. the new algorithm

Mn Classical New DDM Mn Classical New DDM
0.001 71 18 0.4 31 20
0.01 68 16 0.5 25 16
0.1 61 14 0.6 21 16
0.2 49 16 0.7 17 16
0.3 39 18 0.8 16 16

Table 5: Subdomain solves counts for different values of Mn

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

Mn

Ite
r

Iteration number 3 subdomains, Mt=0.0, eps=1.0e−6

Classical Ovr.
New algorithm

Figure 5: Convergence curves for the classical and the new algorithm

flow to the interface. The normal velocity is given by Mn(y) = 0.5(0.2 + 0.04 tanh(y/0.2))) (the same as
for the 2 subdomain case). These tests show that the new algorithm is very stable with respect to various

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

No. Iter

E
rr

or

Convergence history: classic vs. new algorithm

Classical Ovr.
New algorithm

Figure 6: Convergence curves for the classical and the new algorithm

parameters such as the mesh size and the Mach number. We see that the convergence in two iterations of
the continuous algorithm is lost at the discrete level although the subdomain solves are very reasonable.
Moreover, a stabilization was necessary for the discretization of the interface condition (4.3) in order to
keep the algorithm converging. The optimal discretization of this interface condition is not yet quite well
known. The comparison with the classical algorithm is favorable for Mach numbers smaller than 0.5 and
especially very low Mach numbers by a factor of almost 4.

14

7 Conclusion

In this paper we designed a new domain decomposition for the Euler equations inspired by the idea of
the Robin-Robin preconditioner [AN97] applied to the advection-diffusion equation. We used the same
principle after reducing the system to scalar equations via a Smith factorization. The resulting algorithm
behaves very well for low Mach numbers, where usually the classical algorithm doesn’t give very good
results. We reduce the number of subdomain solves by almost a factor 4 for linearization around a constant
and variable state as well. A general theoretical study and more comprehensive numerical tests have to
be done in order to firmly assess the applicability of the proposed algorithm to large scale computations.
This work can also be seen as a first step for deriving new domain decomposition methods for the 2D
or 3D compressible Navier-Stokes equations. Indeed, the derivation of the algorithm which is based on
the Smith factorization is in fact general and can be applied to arbitrary systems of partial differential
equations, see [NR] for the Stokes and Oseen equations and [DNR] for a general presentation.

References

[AN97] Y. Achdou and F. Nataf. A robin-robin preconditioner for an advection-diffusion problem.
C. R. Acad. Sci. Paris, 325, Série I:1211–1216, 1997.

[ATNV00] Yves Achdou, Patric Le Tallec, Frédéric Nataf, and Marina Vidrascu. A domain decom-
position preconditioner for an advection-diffusion problem. Comput. Methods Appl. Mech.
Engrg., 184:145–170, 2000.

[BD97] J. D. Benamou and B. Després. A domain decomposition method for the Helmholtz equation
and related optimal control. J. Comp. Phys., 136:68–82, 1997.

[BGLTV89] Jean-François Bourgat, Roland Glowinski, Patrick Le Tallec, and Marina Vidrascu. Varia-
tional formulation and algorithm for trace operator in domain decomposition calculations.
In Tony Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, editors, Domain
Decomposition Methods, pages 3–16, Philadelphia, PA, 1989. SIAM.

[Bjø95] Morten Bjørhus. A note on the convergence of discretized dynamic iteration. BIT, 35:291–
296, 1995.

[CFS98] X.-C. Cai, C. Farhat, and M. Sarkis. A minimum overlap restricted additive Schwarz precon-
ditioner and applications to 3D flow simulations. Contemporary Mathematics, 218:479–485,
1998.

[Cle98] S. Clerc. Non-overlapping Schwarz method for systems of first order equations. Cont. Math,
218:408–416, 1998.

[CN98] Philippe Chevalier and Frédéric Nataf. Symmetrized method with optimized second-order
conditions for the Helmholtz equation. In Domain decomposition methods, 10 (Boulder, CO,
1997), pages 400–407. Amer. Math. Soc., Providence, RI, 1998.

[DLN02] V. Dolean, S. Lanteri, and F. Nataf. Construction of interface conditions for solving com-
pressible euler equations by non-overlapping domain decomposition methods. Int. J. Numer.
Meth. Fluids, 40:1485–1492, 2002.

[DLN04] V. Dolean, S. Lanteri, and F. Nataf. Convergence analysis of a schwarz type domain de-
composition method for the solution of the euler equations. Appl. Num. Math., 49:153–186,
2004.

[DN04] V. Dolean and F. Nataf. An optimized schwarz algorithm for the compressible euler equa-
tions. Technical Report 556, CMAP - Ecole Polytechnique, 2004.

15

[DNR] V. Dolean, F. Nataf, and G. Rapin. New constructions of domain decomposition methods
for systems of pdes.

[EZ98] Bjorn Engquist and Hong-Kai Zhao. Absorbing boundary conditions for domain decompo-
sition. Appl. Numer. Math., 27(4):341–365, 1998.

[Gan66a] F. R. Gantmacher. Théorie des matrices. Tome 1: Théorie générale. Traduit du Russe par
Ch. Sarthou. Collection Universitaire de Mathématiques, No. 18. Dunod, Paris, 1966.

[Gan66b] F. R. Gantmacher. Théorie des matrices. Tome 2: Questions spéciales et applications.
Traduit du Russe par Ch. Sarthou. Collection Universitaire de Mathématiques, No. 19.
Dunod, Paris, 1966.

[Gan66c] Felix R. Gantmacher. Theorie des matrices. Dunod, 1966.

[Gan98] F. R. Gantmacher. The theory of matrices. Vol. 1. AMS Chelsea Publishing, Providence,
RI, 1998. Translated from the Russian by K. A. Hirsch, Reprint of the 1959 translation.

[GGTN04] L. Gerardo-Giorda, P. Le Tallec, and F. Nataf. A robin-robin preconditioner for advection-
diffusion equations with discontinuous coefficients. Comput. Methods Appl. Mech. Engrg.,
193:745–764, 2004.

[GH03] Martin J. Gander and Laurence Halpern. Méthodes de relaxation d’ondes pour l’équation
de la chaleur en dimension 1. C.R. Acad. Sci. Paris, Série I, 336(6):519–524, 2003.

[GHN01] Martin J. Gander, Laurence Halpern, and Frédéric Nataf. Optimal Schwarz waveform re-
laxation for the one dimensional wave equation. Technical Report 469, CMAP, Ecole Poly-
technique, September 2001.

[GKM+91] R. Glowinski, Y.A. Kuznetsov, G. Meurant, J. Periaux, and O.B. Widlund, editors. Fourth
International Symposium on Domain Decomposition Methods for Partial Differential Equa-
tions, Philadelphia, 1991. SIAM.

[GMN01] Martin J. Gander, Frédéric Magoulès, and Frédéric Nataf. Optimized Schwarz methods
without overlap for the Helmholtz equation. SIAM J. Sci. Comput., 2001. to appear.

[JNR01] Caroline Japhet, Frédéric Nataf, and Francois Rogier. The optimized order 2 method. ap-
plication to convection-diffusion problems. Future Generation Computer Systems FUTURE,
18, 2001.

[Lio90] Pierre-Louis Lions. On the Schwarz alternating method. III: a variant for nonoverlapping
subdomains. In Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund,
editors, Third International Symposium on Domain Decomposition Methods for Partial Dif-
ferential Equations , held in Houston, Texas, March 20-22, 1989, Philadelphia, PA, 1990.
SIAM.

[LVL05] Seung-Cheol Lee, Marinos N. Vouvakis, and Jin-Fa Lee. A non-overlapping domain decom-
position method with non-matching grids for modeling large finite antenna arrays. Journal
of Computational Physics, 2005.

[Man92] J. Mandel. Balancing domain decomposition. Comm. on Applied Numerical Methods, 9:233–
241, 1992.

[NR] F. Nataf and G. Rapin. A new domain decomposition method for the Stokes and Oseen
systems. submitted.

[QS96] A. Quarteroni and L. Stolcis. Homogeneous and heterogeneous domain decomposition meth-
ods for compressible flow at high reynolds numbers. Technical Report 33, CRS4, 1996.

16

[Qua90] A. Quarteroni. Domain decomposition methods for systems of conservation laws : spectral
collocation approximation. SIAM J. Sci. Stat. Comput., 11:1029–1052, 1990.

[RT91] Y.H. De Roeck and P. Le Tallec. Analysis and Test of a Local Domain Decomposition
Preconditioner. In R. Glowinski et al. [GKM+91], 1991.

[TW04] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and Theory.
Springer Series in Computational Mathematics. Springer Verlag, 2004.

[WRL95] J. T. Wloka, B. Rowley, and B. Lawruk. Boundary value problems for elliptic systems.
Cambridge University Press, Cambridge, 1995.

17

