Stability of Planar Nonlinear Switched Systems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2005

Stability of Planar Nonlinear Switched Systems

Résumé

We consider the time-dependent nonlinear system $\dot q(t)=u(t)X(q(t))+(1-u(t))Y(q(t))$, where $q\in\R^2$, $X$ and $Y$ are two %$C^\infty$ smooth vector fields, globally asymptotically stable at the origin and $u:[0,\infty)\to\{0,1\}$ is an arbitrary measurable function. Analysing the topology of the set where $X$ and $Y$ are parallel, we give some sufficient and some necessary conditions for global asymptotic stability, uniform with respect to $u(.)$. Such conditions can be verified without any integration or construction of a Lyapunov function, and they are robust under small perturbations of the vector fields.
Fichier principal
Vignette du fichier
nl.pdf (321.75 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00004272 , version 1 (16-02-2005)

Identifiants

Citer

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of Planar Nonlinear Switched Systems. 2005. ⟨hal-00004272⟩
317 Consultations
308 Téléchargements

Altmetric

Partager

More