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Abstract — We consider the time-dependent nonlinear system q̇(t) = u(t)X(q(t)) + (1 −
u(t))Y (q(t)), where q ∈ R2, X and Y are two smooth vector fields, globally asymptoti-

cally stable at the origin and u : [0,∞) → {0, 1} is an arbitrary measurable function.

Analysing the topology of the set where X and Y are parallel, we give some sufficient

and some necessary conditions for global asymptotic stability, uniform with respect

to u(.). Such conditions can be verified without any integration or construction of a

Lyapunov function, and they are robust under small perturbations of the vector fields.

Keywords — Global asymptotic stability, planar switched systems, nonlinear.

1 Introduction

A switched system is a family of continuous-time dynamical systems endowed with a rule that determines, at
every time, which dynamical system is responsible for the time evolution. More precisely let {fu | u ∈ U} be
a (possibly infinite) set of smooth vector fields on a manifold M , and consider, as u varies in U , the family of
dynamical systems

q̇ = fu(q) , q ∈M . (1)

A non-autonomous dynamical system is obtained by assigning a so-called switching function u(.) : [0,∞) → U .
In this paper, the switching function models the behavior of a parameter which cannot be predicted a priori.

It represents some phenomena (e.g., a disturbance) that it is not possible to control or include in the dynamical
system model.

A typical problem related to switched systems is to obtain, out of a property which is shared by all the
autonomous dynamical systems governed by the vector fields fu, some, maybe weaker, property for the time-
dependent system associated with an arbitrary switching function u(.). For a discussion on various issues
related to switched systems we refer the reader to [11, 13].

In this paper, we consider a two-dimensional nonlinear switched system of the type

q̇ = uX(q) + (1 − u)Y (q) , q ∈ R
2 , u ∈ {0, 1} , (2)

where the two vector fields X and Y are smooth (say, C∞) on R2. In order to define proper non-autonomous
systems, we require the switching functions to be measurable.

Assume that X(0) = Y (0) = 0 and that the two dynamical systems q̇ = X(q) and q̇ = Y (q) are
globally asymptotically stable at the origin. Our main aim is to study under which conditions on X and
Y the origin is globally asymptotically stable for the system (2), uniformly with respect to the switching
functions (GUAS for short). For the precise formulation of this and other stability properties, see Definition 1.

In order to study the stability of (2) it is natural to consider its convexification, i.e., the case in which u
varies in the whole interval [0, 1]. It turns out that the stability properties of the two systems are equivalent
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(see Section 2.2).

The linear version of the system introduced above, namely,

q̇ = uAq + (1 − u)B q , q ∈ R
2 , u ∈ {0, 1} , (3)

where the 2 × 2 real matrices A and B have eigenvalues with strictly negative real part, was studied in [6]
(see also [14]). More precisely, the results in [6] establish a necessary and sufficient condition for GUAS in
terms of three relevant parameters, two depending on the eigenvalues of A and B respectively, and the third
one (namely, the cross ratio of the four eigenvectors of A and B in the projective line CP 1) accounting for the
interrelations among the two systems. The precise necessary and sufficient condition ensuring GUAS of (3) is
quite technical and can be found in [6] (see also [14]). Notice that, in the linear case, GUAS is equivalent to the
more often quoted GUES property, i.e., global exponential stability, uniform with respect to the switching rule
(see, for example, [3] and references therein). For related results on linear switched systems, see [2, 5, 8, 12, 14].

For nonlinear systems, the problem of characterizing GUAS completely, without assuming the explicit
knowledge of the integral curves of X and Y , is hopeless.

The problem, however, admits some partial solution. The purpose of this paper is to provide some suffi-
cient and some necessary conditions for stability which are robust (with respect to small perturbations of the
vector fields) and easily verifiable, directly on the vector fields X and Y , without requiring any integration or
construction of a Lyapunov function.

Denote by Z the set on which X and Y are parallel. One of our main results is that, if Z reduces to the
singleton {0}, then (2) is GUAS (Theorem 6). The proofs works by showing that an admissible trajectory
starting from a point p ∈ R2 is forced to stay in a compact region bounded by the integral curves of X and
Y from p. The fact that X and Y are linearly independent outside the origin plays as a sort of drift which
guarantees that the only possible accumulation point of an admissible trajectory is the origin.

When Z is just compact, we prove that (2) is at least bounded (see Theorem 8). Roughly speaking, this
means that its trajectories do not escape to infinity. The idea of the proof is that, if we modify X and Y only
in a compact region of the plane, then the boundedness properties of the system are left unchanged. Taking
advantage of the result obtained in Theorem 6, we manage to prove the boundedness of (2) by reducing, using
compact perturbations, Z to {0}, while preserving the global asymptotic stability of X and Y .

Other conditions can be formulated taking into account the relative position of X and Y along Z. Assume
that Z \ {0} contains at least one point q0. Since both X(q0) and Y (q0) are different from zero, the property
of pointing in the same or in the opposite versus can be stated unambiguously. If X(q0) and Y (q0) have
opposite versus, then there exists a switching function, for the convexified system, whose output is the constant
trajectory which stays in q0. As a consequence, the system (2) is not GUAS.

Additional results can be obtained under the assumption that the pair of vector fields (X,Y ) is generic.
(For the notion of genericity appropriate to our aims, see Section 2.) In particular, the genericity assumption
can be used to guarantee that Z \ {0} is an embedded one-dimensional submanifold of the plane. Clearly, Z
needs not to be connected. If the connected component of Z containing the origin reduces to {0} and on all
other components X and Y point in the same versus, transversally to Z, then (2) is GUAS. This result is
formulated in Theorem 7, which follows the pattern of proof of Theorem 6.

Conversely, Theorem 11 states that, if one connected component of Z \ {0} is unbounded and such that
X and Y have opposite versus on it, then (2) admits a trajectory going to infinity. Intuitively, this happens
because the orientation of (X(p), Y (p)) changes while p crosses Z \ {0}. If X(p) is not tangent to Z at p
and X(p) points in the opposite direction with respect to Y (p), then one can embed Z, locally near p, in
a foliation made of admissible trajectories of (2), whose running direction is reversed while crossing Z (see
Figure 1). Since, generically, the points where X is tangent to Z are isolated, it turns out that there exists an
admissible trajectory which tracks globally the unbounded connected component of Z \ {0} on which X and
Y have opposite versus.

The paper is organized as follows. In Section 2, we recall the main definitions of stability in which we are
interested, we introduce the convexified system, and we describe the topological structure of the set Z. The
main results are stated in Section 3, where their robustness is also discussed. The proofs are given in Sections 4,
5, 6, and 7.
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Figure 1: A local foliation embedding Z

2 Basic definitions and facts

2.1 Definitions of stability

Fix n,m ∈ N and consider the switched system

q̇ = fu(q) , q ∈ R
n , u ∈ U ⊂ R

m , (4)

where U is a measurable subset of R
m and (q, u) 7→ fu(q) is the restriction on R

n × U of a C∞ function from
Rn × Rm to Rn. Assume that fu(0) = 0 for every u ∈ U .
For every δ > 0, denote by Bδ ⊂ Rn the ball of radius δ, centered at the origin. Set

U = {u : [0,∞) → U | u(.) measurable} .

For every u(.) in U and every p ∈ Rn, denote by t 7→ γ(p, u(.), t) the solution of (4) such that γ(p, u(.), 0) = p.
Notice that, in general, t 7→ γ(p, u(.), t) needs not to be defined for every t ≥ 0, since the non-autonomous vector
field fu(t) may not be complete. Denote by T (p, u(.)) the maximal element of (0,+∞] such that t 7→ γ(p, u(.), t)
is defined on [0, T (p, u(.))), and let

Supp(γ(p, u(.), .)) = γ(p, u(.), [0, T (p, u(.)))) .

If Supp(γ(p, u(.), .)) is bounded, then T (p, u(.)) = +∞.
Given p ∈ R

n, the accessible set from p, denoted by A(p), is defined as

A(p) = ∪u(.)∈USupp(γ(p, u(.), .)) .

Several notions of stability for the switched system (4) can be introduced.

Definition 1 We say that (4) is

• unbounded if there exist p ∈ R
n and u(.) ∈ U such that γ(p, u(.), t) goes to infinity as t tends to

T (p, u(.));

• bounded if, for every K1 ⊂ Rn compact, there exists K2 ⊂ Rn compact such that γ(p, u(.), t) ∈ K2 for
every u(.) ∈ U , t ≥ 0 and p ∈ K1;

• uniformly stable at the origin if, for every δ > 0, there exists ε > 0 such that A(p) ⊂ Bδ for every
p ∈ Bε;

• locally attractive at the origin if there exists δ > 0 such that, for every u(.) ∈ U and every p ∈ Bδ,
γ(p, u(.), t) converges to the origin as t goes to infinity;
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• globally attractive at the origin if, for every u(.) ∈ U and every p ∈ Rn, γ(p, u(.), t) converges to the
origin as t goes to infinity;

• globally uniformly attractive at the origin if, for every δ1, δ2 > 0, there exists T > 0 such that
γ(p, u(.), T ) ∈ Bδ1

for every u(.) ∈ U and every p ∈ Bδ2
;

• globally uniformly stable (GUS) at the origin if it is bounded and uniformly stable at the origin;

• locally asymptotically stable (LAS) at the origin if it is uniformly stable and locally attractive at the
origin;

• globally asymptotically stable (GAS) at the origin if it is uniformly stable and globally attractive at
the origin;

• globally uniformly asymptotically stable (GUAS) at the origin if it is uniformly stable and globally
uniformly attractive at the origin.

It has been showed by Angeli, Ingalls, Sontag, and Wang [4] that, when U is compact, the notions of GAS
and GUAS are equivalent. This is the case for system (2). Moreover, it is well known that, in the case in which
all the vector fields fu are linear, local and global properties are equivalent.

2.2 The convexified system

In this paper, we focus on the planar switched system

q̇ = uX(q) + (1 − u)Y (q) , q ∈ R
2 , u ∈ {0, 1} , (5)

where X and Y denote two vector fields on R2, of class C∞, such that X(0) = Y (0) = 0. We assume moreover
that X and Y are globally asymptotically stable at the origin. Notice, in particular, that X and Y are forward
complete.

A classical tool in stability analysis is the convexification of the set of admissible velocities. Such trans-
formation does not change the closure of the accessible sets. Moreover, it was proved in [10] (see also [4,
Proposition 7.2]) that, for every p′ ∈ R2, every switching function u′ : [0,∞) → [0, 1], and every positive
continuous function r defined on [0, T (p′, u′(.))), there exist u(.) ∈ U and p ∈ R2 such that

‖γ(p, u(.), t) − γ(p′, u′(.), t)‖ ≤ r(t)

for every t ∈ [0, T (p′, u′(.))). As a consequence each of the notions introduced in Definition 1 holds for (5) if
and only if it holds for the same system where U = {0, 1} is replaced by [0, 1].

In the following, to simplify proofs, we deal with the convexified system

q̇ = uX(q) + (1 − u)Y (q) , q ∈ R
2 , u ∈ [0, 1] . (6)

Notations. When u(.) is constantly equal to zero (respectively, one), we write γY (p, t) (respectively, γX(p, t))
for γ(p, u(.), t). Given p, p′ ∈ R2 and u(.), u′(.) in U , we say that γ(p, u(.), .) and γ(p′, u′(.), .) forwardly intersect
if Supp(γ(p, u(.), .)) and Supp(γ(p′, u′(.), .)) have nonempty intersection.

2.3 The collinearity set of X and Y

A key object in order to detect stability properties of (6) turns out to be the set Z on which X and Y are
parallel. We have that Z = Q−1(0), where

Q(p) = det(X(p), Y (p)) , p ∈ R
2 . (7)

In [6], the stability of the linear switched system (3) was studied by associating with every point of R2

a suitably defined “worst” trajectory passing through it, whose construction was based upon Z. The global
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asymptotic stability of the linear switched system (3) was then proved to be equivalent to the convergence
to the origin of every such worst trajectory. We recall that in the linear case, excepted for some degenerate
situations, Z is either equal to {0} or is made of two straight lines passing through the origin.

In the nonlinear case, the situation is more complex. Let us represent Z as

Z = {0} ∪
⋃

Γ∈G

Γ , (8)

where G is the set of all connected components of Z \{0}. Notice that G needs not, in general, to be countable.
With a slight abuse of notation, we will refer to the elements of G as to the components of Z.

Definition 2 Let Γ be a component of Z and fix p ∈ Γ. We say that Γ is direct (respectively, inverse) if X(p)
and Y (p) have the same (respectively, opposite) direction.

Remark 3 The definition is independent of the choice of p, since neither X nor Y vanish along Γ.

An example of how Z can look like is represented in Figure 2.

direct inverse

direct

inverse

Figure 2: The set Z

Some of the results of this paper are obtained assuming that the set Z has suitable regularity properties,
which are generic in the sense defined below.

A base for the Withney topology on C∞(R2,R2) (the set of smooth vector fields on R
2) can be defined, using

the multi-index notation, as the family of sets of the type

V(k, f, r) =

{

g ∈ C∞(R2,R2)

∣

∣

∣

∣

∥

∥

∥

∥

∂|I|(f − g)

∂xI
(x)

∥

∥

∥

∥

< r(x), ∀x ∈ R
2, |I| ≤ k

}

,

where k is a nonnegative integer, f belongs to C∞(R2,R2), and r is a positive continuous function defined on
R2. Denote by GAS(R2) the set of smooth vector fields on R2 which are globally asymptotically stable at the
origin, and endow it with the topology induced by Withney’s one. A generic property for (6) is a property
which holds for an open dense subset of GAS(R2)×GAS(R2), endowed with the product topology of GAS(R2).

Lemma 4 For a generic pair of vector fields (X,Y ), Z \ {0} is an embedded one-dimensional submanifold of
R

2. Moreover, Q(p) changes sign while p crosses Z \ {0}.

The lemma is a standard result in genericity theory. It follows from the fact that the condition

(G1) If p 6= 0 and Q(p) = 0, then ∇Q(p) 6= 0,
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is generic (see, for instance, [1]). When Z \ {0} is a manifold, we say that p ∈ Z \ {0} is a tangency point if
X(p) is tangent to Z. Under condition (G1), p ∈ Z \ {0} is a tangency point if and only if ∇Q(p) and X(p)
(equivalently, Y (p)) are orthogonal.

Some of our results are obtained under additional generic conditions. One of these, namely,

(G2) The Hessian matrix of Q at the origin is non-degenerate,

ensures that Z, in a neighborhood of the origin, is given either by {0} or by the union of two transversal
one-dimensional manifolds intersecting at the origin.

Under the generic conditions (G1) and (G2), the connected component of Z containing the origin looks
like one of Figure 3.

A third generic condition which we will sometimes assume to hold is

(G3) If p 6= 0, Q(p) = 0, and ∇Q(p) is orthogonal to X(p), then the second derivative of Q at p along X
(equivalently, Y ) is different from zero,

which, together with (G1), guarantees that the tangency points on Z are isolated.

origin
origin origin origin

origin

Figure 3: The connected component of Z containing the origin

3 Statement of the results

We organize our results in sufficient and necessary conditions with respect to the stability properties.
Notice that all such conditions are easily verified without any integration or construction of a Lyapunov

function. Moreover, they are robust under small perturbations of the vector fields, as explained in Section 3.3.
Let us recall that X and Y are assumed to be globally asymptotically stable at the origin and that all the
results given below, although stated for the case u ∈ [0, 1], are also valid for the system where u varies in {0, 1}.

Before stating our main theorems, observe that classical results on linearization imply the following.

Proposition 5 Assume that the eigenvalues of A = ∇X |p=0 and B = ∇Y |p=0 have strictly negative real part.
Then (6) is LAS if and only if (3) is GUAS.

3.1 Sufficient conditions

The following theorem gives a simple sufficient condition for GUAS, which generalizes the analogous one already
known for the linear system (3) (see [6, 14]).

Theorem 6 Assume that Z = {0}. Then the switched system (6) is GUAS at the origin.

Under the generic assumptions (G1) and (G2), Theorem 6 can be generalized as follows.

Theorem 7 Assume that the generic conditions (G1) and (G2) hold. Assume, moreover, that the origin is
isolated in Z and that there is no tangency point in Z \ {0}. Then the switched system (6) is GUAS.
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When Z is bounded, although different from {0}, some weaker version of Theorem 6 still holds.

Theorem 8 Assume that Z is compact. Then the switched system (6) is bounded.

As a direct consequence of Proposition 5 and Theorem 8, we have the following sufficient condition for GUS.

Corollary 9 Let Z be compact, and the linearized switched system be non-degenerate and GUAS. Then the
switched system (6) is GUS.

3.2 Necessary conditions

The following proposition expresses the straightforward remark that the inverse components of Z constitute
obstructions to the stability of (6). The reason is clear: if Γ is inverse and p belongs to Γ, then a constant
switching function u(.) exists such that γ(p, u(.), t) = p for every t ≥ 0.

Proposition 10 If Z has an inverse component, then the switched system (6) is not globally attractive.

The following theorem gives a necessary condition for boundedness, under generic conditions.

Theorem 11 Assume that the generic conditions (G1) and (G3) hold. If Z contains an unbounded inverse
component, then the switched system (6) is unbounded.

3.3 Robustness

We say that a property satisfied by (X,Y ) is robust if it still holds for small perturbations of the pair (X,Y ),
that is, if it holds for all the elements of a neighborhood of (X,Y ) in GAS(R2)×GAS(R2). Such notion of
robustness is also known as structural stability, an expression which we prefer to avoid, in order to prevent
confusion with the many definitions of stability already introduced for (6).

Under the generic conditions (G1) and (G2), one can easily verify that the topology of the set Z does not
change for small perturbations of X and Y . Moreover, fixed one component Γ of Z, the fact that Γ is direct
or inverse is robust. Similarly, if Γ is a component of Z, which has not the origin in its closure, the absence
of tangency points along Γ is robust. As a consequence, the conditions formulated by the theorems above are
robust. More precisely:

Theorem 12 Under generic assumptions, if any of Theorems 6, 7, 8, 11, Corollary 9, or Proposition 10
applies to the pair (X,Y ), then it applies in a neighborhood of (X,Y ) in GAS(R2)×GAS(R2).

4 Proof of Theorem 6

Assume that Z = {0}. We already recalled in Section 2 that GAS and GUAS are two equivalent notions. The
main step of the proof consists in showing that (6) is globally attractive. The uniform stability will be obtained
as a byproduct of the adopted demonstration technique.

Fix q ∈ R2 \ {0}. We first prove that A(q) is bounded. Then we show that, for every u(.) in U , the only
possible accumulation point of γ(q, u(.), t) is the origin. These two facts imply that γ(q, u(.), t) converges to
the origin as t goes to infinity.

4.1 Boundedness of A(q)

We distinguish two cases.
First case: γX(q, .) and γY (q, .) do not forwardly intersect. Then, we can define a closed, simple, piecewise
smooth curve, by

γX,Y (q, t) =

{

γX(q, tan(tπ)) if t ∈
[

0, 1
2

]

,

γY (q, tan((1 − t)π)) if t ∈
[

1
2 , 1

]

,

where γX(q, tan(π/2)) and γY (q, tan(π/2)) are identified with the origin. The support of γX,Y (q, .) separates
R2 in two sets, one being bounded. Let us call B(q) the interior of the bounded set and D(q) the interior of
the unbounded one.

7



Lemma 13 A(q) is contained in B(q) = B(q) ∪ γX,Y (q, [0, 1]).

Proof. Consider the vector field (X + Y )/2. At the point q, it points either inside or outside B(q). Then, as
it becomes clear through a local rectification of (X + Y )/2, the same holds true at all points of γX,Y (q, [0, 1])
sufficiently close to q. Moreover, since the orientation defined by (X,Y ) does not vary on R2 \{0} and coincides
with the ones induced by (X, (X + Y )/2) and ((X + Y )/2, Y ), then (X + Y )/2 is pointing constantly either
inside or outside B(q), all along γX,Y (q, [0, 1]) \ {0}.

Let us assume that (X +Y )/2 points inside B(q). Then B(q) is invariant for the flow of all the vector fields
of the type uX + (1 − u)Y , with u ∈ [0, 1], that is, it is invariant for the dynamics of (6). Hence, A(q) is
contained in B(q).

Assume now, by contradiction, that (X + Y )/2 points outside B(q). The same reasoning as above shows
that A(q) is contained in D(q). Define, for every t ≥ 0 and every τ ∈ R,

γX,Y,t(q, τ) =

{

γX(q,−τ) if τ < −t ,
γY (γX(q, t), τ + t) if τ > −t .

The support of γX,Y,t is given by the union of the integral curves of X and Y connecting γX(q, t) and the origin
(see Figure 4). For every t ≥ 0, we can identify γX,Y,t with a closed curve passing through the origin.

q

Y

Y

Y

Y

X

X

X

X

0

q′

Figure 4: The curves γX,Y,t

Fix a point q′ in B(q). By hypothesis, no γX,Y,t passes through q′. Notice that the index of γX,Y,0 with
respect to q′ is equal to one, since the support of γX,Y,0 coincides with the boundary of B(q). The stability of
Y at the origin implies that the index with respect to q′ of the curve γX,Y,t depends continuously of t, that is,
it is constant on [0,∞). Hence, for every t ∈ [0,∞),

max
τ∈R

‖γX,Y,t(q, τ)‖ > ‖q′‖ > 0 .

On the other hand, when t goes to infinity, γX(q, t) converges to the origin and

sup
τ<−t

‖γX,Y,t(q, τ)‖ = sup
τ>t

‖γX(q, τ)‖
t→∞
−−−−→ 0 .

Therefore, there exist p ∈ R2, arbitrarily close to the origin, such that the curve s 7→ γY (p, s), s > 0, exits the
ball B‖q′‖, which contradicts the stability of Y at the origin.
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Second case: γX(q, .) and γY (q, .) do forwardly intersect. Let t be the first positive time such that the
point γY (q, t) is equal to γX(q, τ) for some τ > 0. Define, for every s ∈ [0, τ + t],

γX,Y (q, s) =

{

γX(q, s) if s ∈ [0, τ ] ,

γY (q, t+ τ − s) if s ∈ [τ, τ + t] .

The curve γX,Y (q, .) is simple and closed, and separates R2 in two open sets B(q) and D(q), B(q) being bounded.

Lemma 14 A(q) is contained in B(q) = B(q) ∪ γX,Y (q, [0, τ + t]).

Proof. Assume that (X+Y )/2 points inside B(q) at q. Hence, the same is true for all points of γX,Y (q, [0, τ+t])
sufficiently close to q. Since Z = {0}, the property extends to the entire curve γX,Y (q, [0, τ+t]), except possibly
at the point γX,Y (q, τ). The same reasoning can be applied at γX,Y (q, τ), showing that (X+Y )/2 points either
inside or outside B(q) at all points of the type γX,Y (q, s), with s close to τ . The only non-contradictory

possibility is that (X + Y )/2 points inside B(q) all along γX,Y (q, [0, τ + t]). Hence, B(q) is invariant under the

flow of each vector field uX + (1 − u)Y , u ∈ [0, 1], so that A(q) is contained in B(q).
Assume, by contradiction, that (X+Y )/2 points inside D(q). The same reasoning as above shows that A(q)

is contained in D(q). In particular, the origin belongs to D(q). On the other hand, the fact that (X + Y )/2
points outside B(q) all along ∂B(q) implies that it has a zero inside B(q). Which is impossible, unless B(q)
contains the origin.

We proved that, in both cases, the set A(q) is bounded. The precise description of A(q) is given by the
following lemma, where the definition of B(q) depends on whether γX(q, .) and γY (q, .) forwardly intersect or
not.

Lemma 15 A(q) = B(q) \ {0}.

Proof. First notice that the origin does not belong to A(q), being a steady point for both X and Y . The
inclusion of A(q) in B(q) \ {0} is thus a consequence of Lemma 13 and Lemma 14.

As for the opposite inclusion, notice that ∂B(q) \ {0} is, by construction, made of integral curves of X and
Y starting from q. Therefore, ∂B(q) \ {0} ⊂ A(q).

Fix now p ∈ B(q) \ {0}. We are left to prove that p ∈ A(q). Define

C = {γX(p, τ) | τ ≤ 0} ,

and let V be a neighborhood of the origin such that p 6∈ V .
Due to the stability of X and the boundedness of B(q), there exists T > 0 such that γX(B(q), T ) ⊂ V .

Since γX(γX(p,−T ), T ) = p 6∈ V , then C is not contained in B(q). Therefore, there exists τ < 0 such that
γX(p, τ) ∈ ∂B(q). Notice that γX(p, τ) is different from the origin, since otherwise we would have p = 0.
Finally, γX(p, τ) ∈ A(q), which implies that p = γX(γX(p, τ), |τ |) belongs to A(q).

4.2 Global attractivity

In the previous section, we showed that the accessible set from every point is bounded. Hence, the global
attractivity of (6) is proved if we ensure that no admissible curve has an accumulation point different from the
origin.

Let us show that, for every point p 6= 0, there exist ε > 0 and a neighborhood Vp of p such that every
admissible curve t 7→ γ(q, u(.), t) entering Vp at time τ leaves Vp before time τ + ε and never comes back to Vp

after time τ + ε.
Since X and Y are not parallel at p, we can choose a coordinate system (x, y) such that X(p) = (1,−1) and

Y (p) = (1, 1). We denote p = (px, py), X(x, y) = (X1(x, y), X2(x, y)), Y (x, y) = (Y1(x, y), Y2(x, y)). The fields
X and Y being continuous, there exists α > 0 such that, if (x, y) ∈ B∞(α) = {(a, b) | |a−px| < α, |b−py| < α},
then X1(x, y), Y1(x, y), −X2(x, y), and Y2(x, y) are in [1/2, 3/2].

Let p′ = (px− α
10 , py) and consider γX(p′, .) = (γ1

X(p′, .), γ2
X(p′, .)). Its first coordinate γ1

X(p′, .) is increasing
and its derivative takes values in [1/2, 3/2]. The same is true for −γ2

X(p′, .). Hence γX(p′, .) does not leave the

9



set B∞(α) before time 2α/3. Since γ1
X(p′, 2α/5) is larger than px + α

10 and γ2
X(p′, 2α/5) is in [py − 3α

10 , py − α
10 ],

then the curve γX(p′, .) intersects the segment Sp = B∞(α) ∩ {(x, y)|x = px + α
10} in a time τX smaller than

2α/5.
The same occurs for γY (p′, .). Denote by τY its intersection time with Sp.
Choose as Vp the bounded set whose boundary is given by the union of γX(p′, [0, τX ]), γY (p′, [0, τY ]), and

the segment [γX(p′, τX), γY (p′, τY )] = {λγX(p′, τX) + (1 − λ) γY (p′, τY ) | 0 ≤ λ ≤ 1} (see Figure 5).

Y

X

X

Y

p′ p

X

Y

γY (p′, τY )

γX(p′, τX)
Vp X

Y

Figure 5: The set Vp

The following lemma states that Vp satisfies the required properties. As a consequence, p cannot be the
accumulation point of any admissible curve.

Lemma 16 We have the following: (i) Vp is a neighborhood of p; (ii) every admissible curve entering Vp

leaves Vp in a time smaller than 2α/5 through the segment [γX(p′, τX), γY (p′, τY )]; (iii) once an admissible
curve leaves Vp, it enters A(p′) \ Vp and never leaves it.

Proof. The first point follows by the construction of Vp. As for (ii), notice that all the points of Vp have
first coordinate in [px − α

10 , px + α
10 ]. Since the first coordinate of X and Y is larger than 1/2, then every

admissible curve entering Vp leaves it in a time smaller than 2α/5. Moreover, since along γX(p′, .) and γY (p′, .)
the admissible velocities of (6) point inside Vp, then an admissible curve can leave Vp only through the segment
[γX(p′, τX), γY (p′, τY )]. Finally, (iii) follows from the remark that A(p′) \ Vp is invariant for the dynamics,
since the admissible velocities of (6) point inside A(p′) \ Vp all along its boundary.

4.3 Conclusion of the proof of Theorem 6

We are left to prove that (6) is uniformly stable. To this extent, fix δ > 0. Since both X and Y are stable at
the origin, then there exists ε > 0 such that every integral curve of X or Y starting in Bε is contained in Bδ.
Hence, for every q ∈ Bε, the boundary of A(q) is contained in Bδ. Therefore, A(q), being bounded, is itself
contained in Bδ.

Remark 17 The proof of Theorem 6 naturally extends to the following case: if V is an open and simply
connected subset of R

2, if X and Y point inside V along its boundary, and if Z ∩ V = {0}, then (6) is
uniformly asymptotically stable on V .

5 Proof of Theorem 7

The proof follows the main steps as the one of Theorem 6. The idea is again to fix a point q ∈ R2, to
characterize the boundary of its accessible set A(q), to prove that such set is bounded, and, finally, to show

10



that no admissible curve has an accumulation point different from the origin.
In order to describe the boundary of A(q), we need some extra construction. Notice that every component

Γ of Z separates the plane in two parts. Since Γ contains no tangency points, then one of such two regions
must be invariant for X , and the same argument holds for Y as well. Necessarily, the invariant region is the
one containing the origin, which is attractive both for X and Y . In particular, Γ is direct and every admissible
curve crosses Γ at most once. Associate with every point q ∈ R2 the number n(q) of components of Z that the
curve γX(q, .) crosses at strictly positive times, before converging to the origin (see Figure 6). Since the curve
γX(q, (0,∞)) is bounded and crosses each component of Z at most once, then n(q) is finite.

Γ1

Γ2Γ3

Γ4

n = 1 n = 2 n = 3
n = 4

q0

n = 0

γX(q, .)

Figure 6

For every i ≤ n(q), let us denote by Γi the i-th component of Z crossed by γX(q, .). We claim that γY (q, .)
crosses exactly the same components as γX(q, .), in the same order. Otherwise, as one can easily check, X and
Y would not both be GAS at the origin (the reason is that the components of Z separate the plane and can
be crossed by an admissible curve at most once).

Let us define two admissible curves, starting from q, that can be used to characterize the boundary of
A(q), in analogy with what has been done in the proof of Theorem 6. The first of such curves follows the
flow of X until it reaches Γ1, then follows the flow of Y until it crosses Γ2, and so on. The second one follows
alternatively the flows of X and Y in the other way round, starting with Y and switching to X as it meets Γ1.
Such two curves converge to the origin, since n(q) is finite. As in the proof of Theorem 6, we can distinguish
two cases, depending on whether the two curves intersect or not (see Figure 7). The arguments of Section 4

Γ1

Γ2Γ3

q
0

Γ4

X

X

X

X

Y

Y

Y

Y

Y

Γ1

Γ2Γ3

q

X

X

X

Y

Y

Y

0

Y

X

X

Figure 7

11



can be adapted in order to prove the boundedness of (6) and the absence of accumulation points different from
the origin. The details are left to the reader.

6 Proof of Theorem 8

Consider a system of coordinates (x, y) on R2 which preserves the origin and renders X radial outside a ball
BR0

, R0 > 0. (Such system can be defined using the level sets of a smooth Lyapunov function for X , see [9].)
Taking possibly a larger R0, we can assume that X and Y are never collinear in R

2 \BR0
.

For every R > 0, let
ΩR = ∪p∈BR

A(p) .

Our aim is to prove that each ΩR is bounded.
Fix R > R0 + 1. If (X,Y ) is replaced with a pair of vector fields (X ′, Y ′) which coincides with (X,Y )

outside BR0+1, then the set ΩR, constructed as above, does not change. The idea is to choose X ′ and Y ′ in
such a way that they are never parallel outside the origin and still GAS. The boundedness of ΩR follows then
from Theorem 6.

Set

X0(x, y) = −x∂x − y∂y ,

Y0(x, y) = y∂x − x∂y + λX0 , λ > 0 ,

and notice that X and X0 are collinear outside BR0
. Notice, moreover, that, if λ is large enough, then the

angle between X0 and Y0 is smaller than the minimum of the angles between X and Y in BR0+1 \ BR0
(see

Figure 8). Fix such a λ.

R0

X0

X0Y

Y

Y ′ = Y0

Y0

Y0

X
X′

X

Y ′

Y ′ = Y

R0 + 1

X′ = X

X′ = X0

Figure 8

The function Q has constant sign on R2 \BR0
. Without lost of generality, we can assume that it is positive.

Fix a smooth function φ : [0,+∞) → [0, 1] such that φ(r) = 0 if r ≤ R0 and φ(r) = 1 if r ≥ R0 + 1. Define

X ′(x, y) =
(

1 − φ
(

√

x2 + y2
))

X0(x, y) + φ
(

√

x2 + y2
)

X(x, y) ,

Y ′(x, y) =
(

1 − φ
(

√

x2 + y2
))

Y0(x, y) + φ
(

√

x2 + y2
)

Y (x, y) .
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By construction, (X ′, Y ′) coincides with (X,Y ) outside BR0+1 and det(X ′, Y ′) is strictly positive on R2\{0}.
We are left to check the global asymptotic stability of Y ′, the one of X ′ being evident. This can be done by
using a comparison argument between the integral curves of Y and Y ′. Indeed, since the angle between X ′ and
Y ′ is smaller than the angle between X ′ and Y in BR0+1 \ BR0

, then the integral curve of Y ′ starting from a
point q ∈ R

2 \ BR0
joins BR0

in finite time, with a smaller total variation in the angular component that the
integral curve of Y starting from the same point q.

Remark 18 The proof given above applies, without modifications, to the more general case where the points
at which X and Y are globally asymptotically stable are allowed to be different.

Remark 19 The conclusion of Theorem 8 would not hold under the weaker hypothesis that X and Y are GUS,
instead of GAS. A counterexample can be given as follows: Let ϕ : [0, 1] → R be a smooth function such that
0 < ϕ(t) < π/2 for every t ∈ (0, 1) and ϕ(k)(0) = ϕ(k)(1) = 0 for every k ≥ 0. Denote by (r, θ) the radial
coordinates on R2. Define, using the radial representation of vectors in R2,

X(r, θ) =

{

(

r, θ + π
2 + ϕ(r)

)

if r ∈ [0, 1] ,
(

r, θ + π
2 − ϕ(r − [r])

)

if r > 1 ,

and

Y (r, θ) =

{

(

r, θ − π
2 − ϕ(2r)

)

if r ∈
[

0, 1
2

]

,
(

r, θ − π
2 + ϕ

(

r + 1
2 −

[

r + 1
2

]))

if r > 1
2 ,

where [r] denotes the integer part of r. Then, for every r ≥ 1, X(r, θ) and Y (r, θ) are linearly independent,
since the difference between their angular components is given by

0 < π − ϕ(r − [r]) − ϕ

(

r +
1

2
−

[

r +
1

2

])

< π .

Hence, Z is compact. On the other hand, the feedback strategy

u(t) =

{

0 if r − [r] ∈
[

1
4 ,

3
4

)

,
1 otherwise

is such that, for every p ∈ R2 \B3/4, ‖γ(p, u(.), t)‖ tends to infinity as t tends to T (p, u(.)) = +∞.
Notice that the example can be easily modified in such a way that Z not only is compact, but actually shrinks

to {0}. It suffices to take X(r, θ) = (r, θ + ψX(r)) and Y (r, θ) = (r, θ + ψY (r)), where the graphs of ψX and
ψY are as in Figure 9.

−
π
2

ψX

1 2

ψY

0

π
2

1

2

3

2

5

2

Figure 9
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7 Proof of Theorem 11

Let Γ be an inverse unbounded component of Z and assume that (G1) and (G3) hold. Due to Lemma 4, Γ is
a one-dimensional submanifold of R

2, which can be parameterized by an injective and smooth map c : R → R
2.

Fix a point p = (px, py) = c(τ) on Γ. According to the results by Davydov (see [7, Theorem 2.2]), up to a
change of coordinates (which, in particular, sets px = 0), the vector fields X and Y can be represented locally
by one of the following three normal forms

1. X(x, y) = (1, x), Y (x, y) = (−1, x);

2. X(x, y) = (1, y − py − x2), Y (x, y) = (−1, y − py − x2);

3. X(x, y) = (−1, x2 − y + py), Y (x, y) = (1, x2 − y + py).

p

Normal form 1

Z

X

Y

p

XX

X

Y

Y

Y

Y
Y

Z

Y

X

X

X

Y

Y

Y

X

X X

Y

YY

X

X

X

Z

Normal form 3Normal form 2

Figure 10

Notice that the type 1 corresponds to the situation in which X and Y are transversal to Γ at p, while 2 and
3 are the normal forms for the case in which X and Y are tangent to Γ at p.

Recall that p is said to have the small time local transitivity property (STLT, for short) if, for every T > 0
and every neighborhood V of p, there exists a neighborhood W of p such that every two points in W are
accessible from each other within time T by an admissible trajectory contained in V . It has been proved in
[7, Theorem 3.1] that, under the assumption that the system admits a local representation in normal form, p
has the STLT property if and only if it is of the type 1. In particular, if p is of the type 1, then there exist
t(p), T (p) > 0 such that, for every r, s ∈ (−t(p), t(p)) there exists an admissible trajectory which steers c(τ + r)
to c(τ + s) within time T (p).

Assume now that p is a point of the type 2 or 3. The curve Γ stays (locally) on one side of the affine line

p+ span(X(p)) = {(x, py) | x ∈ R} ,

which is the affine tangent space to Γ at p. Up to a reversion in the parameterization of Γ, we can assume that,
for every t in a right neighborhood of τ , X(c(t)) points into the locally convex part of the plane bounded by Γ
(see Figure 10). It can be easily verified that the two branches of Γ \ {p} are connected by integral curves of
X and Y arbitrarily close to p, in the following sense: for every t > 0 small enough, there exist θ, T > 0 such
that, for every r ∈ (0, θ), both curves s 7→ γX(c(τ + r), s) and s 7→ γY (c(τ − r), s) intersect Γ in a positive time
smaller than T , and the intersection points are of the type c(τ + ρ), with 0 < |ρ| ≤ t. We can conclude, using
the STLT property at points of Γ \ {p} close to p, that there exists t(p) > 0 such that, for every µ ∈ (0, 1),
every two points of

Σ = {c(τ + r)| µ t(p) < |r| < t(p)}
can be joined by an admissible trajectory of time-length bounded by a uniform T (p, µ) > 0.
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Therefore, given any pair of points pi = c(τi), pf = c(τf ) on Γ of type 1, there exists an admissible trajectory
going from pi to pf of time-length smaller that T (c(τ1), µ1) + · · · + T (c(τk), µk), where

(τ1 − t(c(τ1)), τ1 + t(c(τ1))), . . . , (τk − t(c(τk)), τk + t(c(τk)))

is a covering of the compact segment of R bounded by τi and τf , µ1, . . . , µk ∈ (0, 1) are properly chosen and
T (p, µ) = T (p) if p is of type 1. In particular, system (6) admits trajectories going to infinity.

Remark 20 In the non-generic case the statement of Theorem 11 is false. A counterexample can be found
even in the linear case. Indeed, consider the vector fields

X(q) = Aq, where A =

(

−1/20 −1/E
E −1/20

)

, E = −201

200
−

√
401

200
,

Y (q) = B q, where B =

(

−1/20 −1
1 −1/20

)

. (9)

The integral curves of X are “elliptical spirals”, while the integral curves of Y are “circular spirals”. The
integral curves of X and Y rotate around the origin in opposite sense (since E < 0). One can easily check that,
in this case, the set Z is a single straight line of equation

y = − 20√
401 − 1

x , (10)

and its two components are inverse (see Figure 11).
It can be checked by hand that the switched system defined by X and Y is GUS, although not GUAS (see

also [6], Theorem 2.3, case (CC.3)).

-3 -2 -1 1 2 3

-4

-2

2

4

X

Y

Z

Figure 11
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